(1) The solution(s) to $\sqrt{x-3} = x - 5$ lie in the interval
 (a) (3,4) (b) (4.01,5) (c) (5.01,6) (d) (6.01,8) (e) (8.01,100)
 Answer: isolate sqrt, square both sides: $x - 3 = x^2 - 10x + 25$, all to one side: $0 = x^2 - 11x + 28 = (x - 7)(x - 4)$. So 7 and 4 seem like solutions BUT sub in x=4 and even though it makes inside of sqrt positive it is still not a solution because right side is negative. So, the only solution is $x=7$.

(2) Factor $8x^3 + 125$
 (a) $(4x - 5y)^2$ (b) $(2x + 5)(4x^2 - 10x + 25)$ (c) $(2x - 5)^3$ (d) $4x^2 + 25(2x + 5)$ (e) prime
 Answer: sum of cubes $A^3 + B^3$ factors as $(A + B) * (A^2 - AB + B^2)$

(3) What is the product of the solution(s) to $|x| + 3 = 5$?
 (a) 0 (b) 4 (c) 16 (d) -4 (e) -12
 Answer: rewrite as $x + 5 = -3$ and $x + 5 = 3$, hence $x = -8$; $x = -2$

(4) Find the inverse $f^{-1}(x)$ where $f(x) = \frac{4x - 5}{6}$
 (a) $-\frac{6}{3x - 5}$ (b) $2x + 10$ (c) $18x + 15$ (d) $\frac{3x + 5}{6}$ (e) 9
 Answer: Set $y = f(x)$; reverse x, y to get $x = \frac{4y - 5}{6}$; then $6x = \frac{1}{3}y - 5$; then $6x + 5 = \frac{1}{3}y$, so $y = 18x + 15$.

(5) The sum of the solutions to $3x^2 + 5x - 12 = 0$ is:
 (a) 10 (b) 5 (c) $\frac{10}{3}$ (d) $-\frac{5}{3}$ (e) -10
 Answer: factors as $(3x-4)(x+3)=0$, so $x=4/3, -3$; sum is $-5/3$

(6) Solve the inequality $x^2 + x > 6$ in interval notation:
 (a) $(-\infty, -3) \cup (-3, 2) \cup (2, \infty)$ (b) $(-\infty, -3)$ (c) $(-\infty, -3) \cup (2, \infty)$ (d) $(-3, 2)$ (e) $(-2, \infty)$
 Answer: put in form $x^2 + x - 6 > 0$; factor $(x + 3)(x - 2) > 0$; boundary points are -3,2; so test intervals are $(-\infty, -3), (-3, 2), (2, \infty)$. Test points could be -4, 0, 3, sub into $(x+3)(x-2)$ to get 6; -6; 6 respectively, hence answer is $(-\infty, -3) \cup (2, \infty)$.

(7) Solve $|3x - 4| \leq 5$:
 (a) $x \leq -3$ (b) $-3 \leq x \leq 3$ (c) $x \leq -1/3$ (d) $-1/3 \leq x \leq 3$ (e) $x \leq 3$
 Answer: rewrite as $-5 \leq 3x - 4 \leq 5$. add $4 -1 \leq 3x \leq 9$; divide by 3; $-1/3 \leq x \leq 3$.

(8) The area of a rectangle is 54 square feet. The length is 3 feet more than twice the width. Find the perimeter in feet:
 (a) 33 (b) 33/2 (c) 30 (d) 15 (e) 27
 Answer: let y denote the length and x the width. Thus $y = 3+2x$ (length is 3 more than twice width). Since 54=x*y, we have 54 = $x*(3+2x)$ and we must solve for x: $0 = 2x^2 + 3x - 54 = (2x - 9)(x + 6)$. Only positive solution is $x = 9/2$; so $y = 3+9 = 12$; so perimeter is $2x + 2y = 9 + 24 = 33$.

(9) Solve $\frac{1}{x - 1} + \frac{2x}{2x + 1} = 1$:
 (a) 2 (b) 0 (c) 3 (d) -3 (e) -2
 Answer: multiply by $(x-1)(2x+1)$ to get $(2x + 1) + 2x(x - 1) = (x - 1)(2x + 1)$; simplify $2x^2 + 1 = 2x^2 - x - 1$ or $2 = -x$ hence $x=-2$.

(10) The x value for the solution to the system
 \[\begin{align*}
 3x - 5y &= 4 \\
 2x - 5y &= 1
 \end{align*}\]
 is:
 (a) 1 (b) -2 (c) 3 (d) -4 (e) 5
 Answer: multiply second equation by -1 to get opposite y’s
 \[\begin{align*}
 3x - 5y &= 4 \\
 -2x + 5y &= -1
 \end{align*}\] and add $x = 4 - 1 = 3$
(11) The distance from (2,-1) to (-1,3) is:
 (a) 1 (b) 13 (c) \sqrt{13} (d) 5 (e) 25
 Answer: distance formula \sqrt{(2 - (-1))^2 + (-1 - (-3))^2} = \sqrt{9 + 16} = 5

(12) Solve 3x + 7 ≤ x - 4:
 (a) [11/2, ∞) (b) (-∞, 7/2] (c) [-11/2, ∞) (d) (-∞, -11/2] (e) [-3/2, ∞)
 Answer: rewrite as 2x ≤ -7 - 4, hence 2x ≤ -11 or x ≤ -11/2, so (-∞, -11/2).

(13) The slope of the line passing through (-1,1) and (3,-4) is
 Answer: use slope formula: slope = \frac{-4 - 1}{3 - (-1)} = \frac{-5}{4}

(14) Find f(g(5)) where f(x) = 2x + 3 and g(x) = -x + 1:
 (a) -12 (b) -52 (c) 9 (d) -5 (e) -9
 Answer: g(5) is -5+1 = -4; so f(g(5)) = f(-4) = 2(-4) + 3 = -5

(15) A line has slope 2 and goes through midpoint of line joining the line segment from (2,0) to (6,-8),
 the equation is:
 (a) y=2x-4 (b) y=2x-8 (c) y=2x-12 (d) y=2x-16
 Answer: midpoint is \left(\frac{2+6}{2}, \frac{0+(-8)}{2}\right) = (4,-4) and slope 2, means y-(-4) = 2(x-4) or y=2x-4.

(16) The graph of the equation x^2 - 8x + 9y + 2y = -13 is:
 (a) a circle with center (4,-1) and radius 4 (b) a parabola with vertex (4,-1) (c) a circle with center (4,-1) and radius 2 (d) a straight line (e) a parabola with vertex (-4,1)
 Answer: This is a circle and we need to complete the squares (adding (b/2)^2):
 x^2 - 8x + 16 + 9y + 2y + 1 = -13 + 16 + 1 hence (x - 4)^2 + (y + 1)^2 = 4 so center is (4,-1) and radius is 2

(17) The domain of f(x) = \frac{2x+6}{x^2-16} is the set of reals x such that:
 (a) x \neq -3 (b) x \neq \pm 4 (c) -4 < x < 4 (d) x \neq \pm 4 and x \neq -3 (e) x > 4
 Answer: denominator can’t be 0, so x \neq \pm 4

(18) what is the slope of the line which is perpendicular to 2x+3y=6:
 (a) \frac{3}{2} (b) -\frac{3}{2} (c) \frac{2}{3} (d) -\frac{2}{3} (e) -\frac{1}{2}
 Answer: negative inverse of slope of 2x+3y=6. find this slope by rewriting in y=mx+b form; y = -\frac{2}{3} x + 2, so the slope we want is +\frac{3}{2}

(19) What’s the remainder when dividing x+1 into x^4 - 3x^3 + 2x - 5:
 (a) -5 (b) -3 (c) -3x^3 + 2x - 5 (d) -1 (e) 0
 Answer: could use synthetic division: -1 | 1 -3 0 2 -5 or use that remainder is f(-1) = (-1)^4 - 3(-1)^3 + 2(-1) - 5 = -3

(20) The graph of y = log (x - 4) - 3 can be obtained from the graph of y = log x by shifting it:
 (a) right by 4 up by 3 (b) left by 4 down by 3 (c) right by 4 down by 3 (d) right by 3 down by 4 (e) right by 7
 Answer: this of the form f(x - 4) - 3 so it is shifted right by 4 then down by 3

(21) The y-intercepts and x-intercepts of y = x^2 - x - 6 listed in that order are:
 (a) -6,-2,3 (b) 6,-3,2 (c)-3,2,6 (d) 0,6 (e) don't know
 Answer: y-intercept sub in x=0 to get y=-6; x-intercept(s) sub in y=0 and solve 0 = x^2 - x - 6 = (x - 3)(x + 2), i.e. -2,3.

(22) The y value of the vertex of f(x) = -x^2 + 4x + 3 is:
(a) 4 (b) -9 (c) 3 (d) 4 (e) 7
Answer: vertex is \(-\frac{b}{2a}, f(-\frac{b}{2a})\), hence x-value is 2, so y-value is \(f(2) = -2^2 + 4(2) + 3 = 7\).

(23) The equation of the horizontal asymptote of \(f(x) = \frac{2x^3 - 4x^2 + 7}{x^3 - 27}\) is:
(a) \(y = 2\) (b) \(x = 3\) (c) \(y = 0\) (d) \(x = 2\) (e) no horizontal asymptote
Answer: Degree in numerator is same as denominator, thus \(y = \frac{2}{1} = 2\).

(24) Solve for \(y\) in the equation \(8a y - 9x = 11\)
(a) \(\frac{8ay-9x}{22}\) (b) \(\frac{9x}{8a-22}\) (c) \(\sqrt{9x + 8a}\) (d) \(4a - \frac{2x}{9}\) (e) \(5ax\)
Answer: get all \(y\)'s on left side: \(8ay - 9x = 2y \cdot 11\), hence \(8ay - 22y = 9x\), or \(y \cdot (8a - 22) = 9x\), so \(y = \frac{9x}{8a-22}\).

(25) Five thousand dollars is invested at 8% compounded monthly, what will the account be worth in 5 years?
(a) 5416.44 (b) 7449.23 (c) 7459.12 (d) 8080.37 (e) 506285.32
Answer: use \(A = P \left(1 + \frac{r}{12}\right)^{12 \times t}\), hence \(A = 5000 \times (1.00667)^{60} = 7449.12\)

(26) Solve with exact answer: \(10^{2x} = 7\), \(x = \frac{1}{2} \log_{10} 7\)
(a) \(\frac{1}{2} \log_{10} 7\) (b) \(\log_{10} 3.5\) (c) \(10^{7/2}\) (d) \(\log_{10} 7 - 2\) (e) \(\log_{10} \frac{14}{10}\)
Answer: \(x\) in exponent so take log base 10 which is same as converting to log form: \(2x = \log 7\), thus \(x = \frac{\log 7}{2}\).

(27) Solve \(4^{x+1} = 2^{3x}\):
(a) -2 (b) 0 (c) 1 (d) 2 (e) no solution
Answer: obviously work in base 2, so rewrite as \(2^{2x+2} = 2^{3x}\), hence \(2(x+1) = 3x\), so \(2 = x\).

(28) the domain of \(f(x) = \ln (7 - 2x)\) is
(a) \(x \geq 3.5\) (b) \(x > 3.5\) (c) \(x < 3.5\) (d) \(x > 5\) (e) \(x > 0\)
Answer: Inside of log must be greater than 0, so \(7 - 2x > 0\) and solve as in \(7 > 2x\), or \(7/2 > x\), hence \(x < 7/2\).

(29) Solve \(3 + \log_3(4x + 1) = 5\)
(a) -2 (b) 2 (c) \(\frac{1}{3}\) (d) \(\frac{3}{4}\) (e) no solution
Answer: isolate log, then exponentiate: \(\log_3(4x + 1) = 2\), so 3 to the power of both sides: \(4x + 1 = 9\), hence \(4x = 8\), or \(x = 2\).

(30) Combine into one log: \(\ln(x - 3) + 2 \ln(x) - \ln(4x + 5)\)
(a) \(\ln(x^3 - 3x^2)\) (b) \(\ln(x^2 - 3x - 8)\) (c) \(\ln(\frac{x^2 + x - 3}{2x + 5})\) (d) \(\ln(-x - 8)\) (e) \(\ln\left(\frac{x^3 - 3x^2}{4x + 5}\right)\)
Answer: \(\ln((x-3) + \ln(x^2) - \ln(4x+5))\) by power rule, then by product rule \(\ln((x-3) \cdot x^2) - \ln(4x+5)\), finally \(\ln\left(\frac{(x-3)x^2}{4x+5}\right)\) by quotient rule.

(31) The number of watts, \(W\), on a space satellite’s power supply after \(d\) days is given by \(W = 80e^{-0.0004d}\). How long in days until the power drops to 25 watts?
(a) 7 (b) 184 (c) 1837 (d) 2901 (e) 2908
Answer: Simply set \(25 = 80e^{-0.0004d}\) and solve for \(d\). We divide by 80, then take ln of both sides: \(\ln(25/80) = -0.0004d\), thus \(d = \ln(25/80)/(\ln(0.0004)) = 2907.87\).