(1) Let $a = 4 - 3i$ and $b = -2 + 5i$. Compute each expression indicated. If the answer is not a real number then write it in the form $x + yi$. Leave expressions like $\sqrt{3}$ and $\cos 2\theta$ unevaluated.

(a) $\Re a = 4$

(b) $\Im a = -3$

(c) $\bar{a} = 4 + 3i$

(d) $5a = 20 - 15i$

(e) $a + b = (4 - 2) + (-3 + 5)i = 2 + 2i$

(f) $\exp a = e^{4 \cos(-3)} + i e^{4 \sin(-3)}$

(g) $|a| = \sqrt{4^2 + (-3)^2} = 5$

(h) $ab = 4(-2) + 4(5i)(-3i)(-2) + (-3i)(5i)$

$= -8 + 20i + 6i - 15i^2 = -(8 + 15) + (20 + 6i) = 7 + 26i$

(i) $\arg a = \arctan(-\frac{3}{4})$ [ϕ in the diagram]

(j) $\frac{a}{b} = \frac{(4 - 3i)}{(-2 + 5i)}$

$= \frac{(4 - 3i)(-2 - 5i)}{(-2 + 5i)(-2 - 5i)}$

$= \frac{-23 - 14i}{4 + 25}$

$= \frac{-23}{29} - \frac{14}{29}i$
(2) State the definitions of \(\sin z \) and \(\cos z \) and use them to show that for any \(z \in \mathbb{C}, \sin^2 z + \cos^2 z = 1 \). (Do not use \(z = x + yi \). Quote properties of any function that you know except those of \(\sin z \) and \(\cos z \).)

\[
\sin z = \frac{1}{2i} (e^{iz} - e^{-iz}) \quad \cos z = \frac{1}{2} (e^{iz} + e^{-iz})
\]

\[
\sin^2 z + \cos^2 z = -\frac{1}{4} (e^{2iz} - 2e^0 + e^{-2iz})
\]
\[
+ \frac{1}{4} (e^{2iz} + 2e^0 + e^{-2iz})
\]
\[
= \frac{2}{4} + \frac{2}{4} = 1
\]

(3) Find all solutions of each equation. Write the answer in the form \(x + yi \) or \(re^{i\theta} \), whichever is easier.

(a) \(\frac{2z}{z + 2 - i} = -3 + 4i \)

\[
2z = (-3 + 4i)z + (-3 + 4i)(2 - i)
\]
\[
(5 - 4i)z = -2 + 11i
\]
\[
z = \frac{-2 + 11i}{5 - 4i} = \frac{(-2 + 11i)(5 + 4i)}{(5 - 4i)(5 + 4i)} = \frac{-54 + 47i}{25 + 16}
\]
\[
= -\frac{54}{41} + \frac{47}{41}i
\]

(b) \(z^5 - 2 + 2i = 0 \)

\[
z^5 = 2 - 2i = \sqrt[5]{8} e^{-\frac{\pi}{4}i} \quad \text{[see diagram]}
\]
Since \(\sqrt[5]{8} = 10^{\frac{1}{5}} \)

\[
z_0 = 10^{\frac{1}{5}} \exp \left(-\frac{\pi}{20}i \right)
\]
\[
z_1 = 10^{\frac{1}{5}} \exp \left(\left(-\frac{\pi}{20} + \frac{2\pi}{5} \right)i \right)
\]
\[
z_2 = 10^{\frac{1}{5}} \exp \left(\left(-\frac{\pi}{20} + \frac{4\pi}{5} \right)i \right)
\]
\[
z_3 = 10^{\frac{1}{5}} \exp \left(\left(-\frac{\pi}{20} + \frac{6\pi}{5} \right)i \right)
\]
\[
z_4 = 10^{\frac{1}{5}} \exp \left(\left(-\frac{\pi}{20} + \frac{8\pi}{5} \right)i \right)
\]

Remark: you could use \(\frac{7\pi}{4} \) for the argument of \(2 - 2i \) and compute 5 roots using it. If you simplify \(-\frac{\pi}{20} + \frac{2\pi}{5} = \frac{7\pi}{20} \) and so on, you see that you have the same 5 complex numbers.
(4) State the definition of the derivative of \(f(z) \) and use it to find the derivative of \(f(z) = 1/z \). (You need not justify your answer with an \(\varepsilon-\delta \) argument.)

\[
f'(z) = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h}
\]

In this case:

\[
f'(z) = \lim_{h \to 0} \frac{\left[(\frac{1}{z+h}) - \frac{1}{z} \right]}{h} = \lim_{h \to 0} \frac{\left[-\frac{h}{(z+h)z} \right]}{h}
\]

\[
= \lim_{h \to 0} \frac{-1}{(z+h)z} = -\frac{1}{z^2}.
\]

(5) Find each derivative (without using limits). No need to simplify.

(a) \(\frac{d}{dz}((-5+7i)z^2) = 2(-5+7i)z \)

(b) \(\frac{d}{dz}\left(\left(\frac{(2-9i)z+i}{iz-12}\right)^6\right) = 6\left(\frac{(2-9i)z+i}{iz-12}\right)^5 \frac{(iz-12)(2-9i)-(iz-12)^2}{(iz-12)^2} \).

(c) \(\frac{d}{dz}(\sin^2 z^2) = 2 \sin z^2 \cdot \cos z^2 \cdot 2z \)

(6) Find the set of points in \(\mathbb{C} \) at which \(f(x+yi) = (x^2 + y) + i(y^2 - x) \) is differentiable.

\[
U(x,y) = x^2 + y \\
V(x,y) = -x + y^2 \\
U_x = 2x \\
V_x = -1 \\
U_y = 1 \\
V_y = 2y
\]

The partial derivatives exist and are continuous everywhere, hence \(f'(z) \) exists exactly where the Cauchy-Riemann equations hold.

\[
U_y = -V_x \text{ holds everywhere} \\
U_x = 2x = 2y = V_y \text{ holds if and only if } x = y.
\]

Thus \(f \) is differentiable along \(x=y \) and nowhere else.

\[
(f'(x+yi) = U_x(x,y) + V_x(x,y)i = 2x - i).
\]
Compute \(\int_C z^2 + \overline{z}^2 \, dz \) where \(C \) is the straight line segment from 1 to \(i \). Hint: first write \(z \) as \(x + yi \) and simplify \(z^2 + \overline{z}^2 \); factor constants out of the integrand.

\[
\overline{z} + z = (x+y \, i)^2 + (x-y \, i)^2 = x^2 + 2xy \, i - y^2 + x^2 - 2xy \, i - y^2 = 2x^2 - 2\, y^2 = 2(x^2 - y^2)
\]

Parametrize \(C \) by \(z(t) = x(t) + y(t) \, i = (1-t) + t \, i \), \(0 \leq t \leq 1 \) so that \(z'(t) = x'(t) + y'(t) \, i = -1 + i \).

Then
\[
\int_C z^2 + \overline{z}^2 \, dz = \int_0^1 \sqrt{2 \left((1-t)^2 - t^2 \right)} \left(-1 + i \right) \, dt
\]
\[
= 2(-1+i) \int_0^1 \sqrt{1-2t+t^2} \, dt
\]
\[
= 2(-1+i) \int_0^1 \sqrt{t} \, dt
\]
\[
= 2(-1+i) \left[\frac{t^{3/2}}{3/2} \right]_0^1
\]
\[
= 0
\]

(8) Suppose \(f(z) = f(x+yi) \) is entire and has the form \(f(x+yi) = u(x) + v(y)i \). Show that there exist constants \(c_1 \) and \(c_2 \) such that \(f(z) = c_1 z + c_2 \).

Since \(f' \) exists everywhere the Cauchy-Riemann equations hold for all \(x \) and \(y \):

\[
u = u'(x) = v'(y) = u_y \quad \text{and} \quad u_y = 0 = -v_x
\]

The second equation is automatic. The first can hold only if \(u'(x) \) and \(v'(y) \) are equal to the same real constant, call it \(a \). We find \(u(x) \) and \(v(x) \) by integration.

\[
u(x) = \int u'(x) \, dx = \int a \, dx = ax + b \, , \text{some} \, b \in \mathbb{R}
\]

\[
u(y) = \int v'(y) \, dy = \int a \, dy = ay + c \, , \text{some} \, c \in \mathbb{R}
\]

Thus

\[
f(z) = u(x) + v(y)i = (ax + b) + (ay + c)i
\]

\[
= a(x + yi) + (b + ci)
\]

\[
= c_1z + c_2 \quad \text{where} \quad c_1 = a \quad \text{and} \quad c_2 = b + ci.
\]