2 Solution of Test II

[20] Problem 2.1. Given is a quadrilateral with two pairs of congruent opposite sides. Prove in neutral geometry that the two pairs of opposite sides are parallel. Provide a drawing.

Answer. Given is the quadrilateral $\square ACBD$ with two pairs of congruent opposite sides $AC \cong BD$ and $BC \cong AD$. We draw the diagonal AB and get the congruent triangles $\triangle ABC \cong \triangle BAD$, as one confirms by SSS congruence. Hence the angles $\beta = \angle ABC$ and $\alpha = \angle BAD$ are congruent. We see that the diagonal AB transverses the lines of the opposite sides DA and BC with congruent z-angles. By Euclid I.27, we conclude that the opposite sides are parallel.
Problem 2.2. Given is a triangle $\triangle ABC$. Prove that $a < b$ implies $\alpha < \beta$.

Answer. In $\triangle ABC$, we assume for sides $a = BC < AC = b$. We have to compare the angles $\alpha = \angle CAB$ and $\beta = \angle ABC$ across these two sides.

We transfer the shorter side BC at the common vertex C onto the longer side. Thus one gets a segment $CD \cong BC$, with point D between C and A. Because the $\triangle BCD$ is isosceles, it has two congruent base angles

$$\delta = \angle CDB \cong \angle DBC$$

Because $C \ast D \ast A$, we get by angle comparison at vertex B

$$\delta = \angle DBC < \beta = \angle ABC$$

Now we use the exterior angle theorem for $\triangle ABD$. Hence

$$\alpha = \angle CAB < \delta = \angle CDB$$

By transitivity, these three equations together imply that $\alpha < \beta$. Hence the angle α across the smaller side CB is smaller than the angle β lying across the greater side AC. In short, we have shown that $a < b \Rightarrow \alpha < \beta$.
Problem 2.3. Given is any angle $\angle BAC$. Construct the angular bisector.

Construction 1. We choose congruent segments $AB \cong AC$ on the sides of the given angle. Draw the line BC, and transfer the base angle $\angle ABC$ to the ray \overrightarrow{BC}, on the side of line BC opposite to vertex A. On the new ray, we transfer segment AB to get the new segment $BD \cong BA$. The ray \overrightarrow{AD} is the bisector of the given angle $\angle BAC$.

Figure 3: The angular bisector

Question. Reformulate the description of this construction precisely, and as short as possible.

Answer. One transfers two congruent segments AB and AC onto the two sides of the angle, both starting from the vertex A of the angle. The perpendicular, dropped from the vertex A onto the segment BC, is the angular bisector.

Proof of validity. By assumption, the three points A, B, C do not lie on a line. By construction, points A and D lie on different sides of line BC. Hence the segment AD intersects line BC, say at point M. Steps (1) and (4) confirm the congruence of three triangles.

Step (1): We confirm that $\triangle AMB \cong \triangle DMB$.

Answer. The matching pieces used for the proof are stressed in the figure on page 4. Indeed, by construction, $\angle ABC \cong \angle DBC$. Hence $\angle ABM \cong \angle DBM$. (It does not matter whether M lies on the ray \overrightarrow{BC} or the opposite ray.) Too, we have a pair of congruent adjacent sides: Indeed $BD \cong BA$ by construction, and $BM \cong BM$. Now SAS congruence implies $\triangle AMB \cong \triangle DMB$.

Step (2): Explain carefully why $\angle AMB$ is a right angle.

Answer. Because of $\triangle AMB \cong \triangle DMB$, we get $\angle AMB \cong \angle DMB$. Because point M lies between A and D, these are two supplementary angles. Hence they are right angles.

Step (3): Prove that M lies between points B and C.
Answer. By construction $AB \cong AC$ and hence the triangle $\triangle ABC$ is isosceles. It has congruent base angles $\beta = \angle ABC \cong ACB$, and as a consequence of the exterior angle theorem, we know that they are acute.

We can now rule out that $M = B$ since we would obtain an isosceles triangle $\triangle AMC$ with a right base angle. Too, we can rule rule out that $M \ast C \ast B$. In this case the triangle $\triangle AMC$ would have a right angle and an obtuse angle $\angle MCA$ supplementary to the acute base angle β. The impossible case is illustrated in the figure on page 4. Similarly, we see that that neither the cases $M = C$ nor $M \ast B \ast C$ are possible. Hence

\[B \ast M \ast C. \]

Step (4): Finally, confirm that $\triangle DMB \cong \triangle AMC$.

Answer. Again the pieces used for the proof are stressed in the figure on page 5. One uses SAA congruence. The two triangles have the congruent vertical angles $\angle DMB \cong$
∠AMC. By construction we get the congruent sides $DB \cong AC$ and finally the congruent angles $∠DBM = ∠DBC \cong ∠ACB = ∠ACM$ since the triangle $\triangle ABC$ is isosceles.

Conclusion : From the triangle congruences in step (1) and (4), we conclude that $\triangle AMB \cong \triangle AMC$. Hence $∠MAB \cong ∠MAC$, and $MB \cong MC$. ¹ Hence ray $\overrightarrow{AM} = \overrightarrow{AD}$ lies inside the given angle $∠BAC$, which is bisected.

¹Since point M lies on the line BC, the last congruence shows that M lies between B and C, too.
Problem 2.4 (Construction with classical tools in neutral geometry).

Give a construction of an equilateral triangle, and an angle of 60° with compass and straightedge in neutral geometry.

(a) Do the construction and give a description.

(b) What can one say about the angles at the vertices of the triangle, in neutral geometry? Why are extra steps needed for the construction of the 60° angle?

(c) At which vertex can you get the angle of 60° even in neutral geometry, nevertheless?

(d) Convince yourself once more that all reasoning has been done in neutral geometry. Additional to Hilbert’s axioms, which intersection property do you need.

Figure 7: The construction of a 60° angle at the center O is possible with straightedge compass in neutral geometry.

Answer. (a) Description of the construction. Draw any segment AB. The circles about A through B, and about B through A intersect in two points C and D. We get an equilateral triangle $\triangle ABC$. Now we draw a third circle about C through point A, which passes through point B, too. With the two circles drawn earlier, the third circle has additional intersection points H and F. Finally, we draw the
segments AF, BH and CD. These are the perpendicular bisectors of the sides of triangle $\triangle ABC$. All three intersect in one point O inside triangle $\triangle ABC$. At vertex O, one gets six congruent angles which add up to 360°, hence they are all 60°.

(b) **The angles at the vertices may not be 60°.** Extra steps are needed, because, in neutral geometry, the angle sum of a triangle may be less than two right angles. All we can conclude about the angles at the vertices A, B, C, is their congruence. This follows because the angles opposite to congruent sides are congruent. Still they may all three be less than 60°.

(c) **The 60° angles appear at the center.** At vertex O, one gets six congruent angles which add to 360°, hence they are all 60°.

(d) **The circle-circle intersection property is needed.** All justifications can be given in neutral geometry. Besides Hilbert’s axioms, we only need the circle-circle intersection property.