Information for Teachers

The Julia Robinson Mathematics and Computing Festival Day prize problems on the next few pages are designed for your grade students. They are hard problems that your students might find interesting. If they do find them interesting, they have accomplished their purpose. Students do not have to work these problems to be successful. In fact, we would like you to pick a prize-winning student even if your students do not solve these problems. We hope you will register your prize winner at the website http://education.uncc.edu/oeo/jrmf, and then urge them to attend. You can ask them which of the prizes they would like, a book prize or a t-shirt prize and you can let us know by means of the online web registration. At that time we hope you will agree to help us that day March 30, 2013. We also ask that you estimate the number of your female students you expect to attend the JRMCF Day. Only female middle school students are invited to take part that day.
1. **The Four 4’s problem.** We have four copies of the digit 4 to use in this problem. The idea is to combine them in different ways to count to 100. We’ll try to construct each number, 1, 2, 3, etc. up to 100 using four 4’s, and when we can’t construct a number, we’ll allow ourselves to use five 4’s. The operations we can use are the usual arithmetic operations, plus, minus, times, and divides +, −, ×, ÷. We also allow ourselves concatenation *. For example, we can build the number $4 \times 4 = 44$ from two 4’s. Also, note that $(4 \times 4) \times 4 = 164$. When there is not possible confusion, we write just 44 instead of 4×4. Notice that this is just the basis for place value notation: $a \times b = 10a + b$. Here are a few examples to get you started. $1 = 44 \div 44$, $2 = (4 \div 4) + (4 \div 4)$, and $3 = (4 + 4 + 4) \div 4$. Be sure you use parentheses to make your expressions clearly defined. The important thing here is to see which numbers cannot be constructed with four 4’s.

2. **X’ing digits.** Consider the number

$$N = 123456789101112131415161718192021222324252627282930 \ldots 5960$$

obtained by writing the numbers from 1 to 60 next to one another. What is the largest number that can be produced by crossing out 100 digits? You are not allowed to rearrange the digits that you don’t cross out.

3. Three signal lights were set to flash every certain specified time. The first light flashes every 12 seconds, the second flashes every 30 seconds and the third one every 66 seconds. The signal lights flash simultaneously at 8:30 a.m. At what time will the signal lights next flash together?

4. Every whole number larger than 7 can always be expressed as a sum of 3’s, 5’s, or both. For example, $9 = 3 + 3 + 3$, $10 = 5 + 5$ and $19 = 3 + 3 + 3 + 5 + 5$. With the rule that the 3’s always comes before the 5s, how many ways can we express 444?

5. Consider all possible numbers between 1000 and 2013 which are formed by using only the digits 0, 1, 2, 3, 4 with no digit repeated. How many of these are divisible by 6?

6. Consider all possible numbers between 1000 and 2013 which are formed by using only the digits 0, 1, 2, 3, 4 allowing repetition of digits. How many of these are divisible by 3?

7. Juan and Thu are both smart chocolate-lovers. There are four bars of chocolate of sizes 250 grams, 300 grams, 400 grams and 600 grams. Juan chooses first and starts eating at a uniform (=constant) rate. As soon as Juan chooses,
Thu gets to choose which chocolate bar to start on, and she eats at the same uniform rate as Juan. As soon as one of them finishes, that person chooses again and again eats at the same rate. Who gets the most chocolate. Explain how they can achieve it.

8. A rectangular block of size $3 \times 4 \times 5$ is built from 60 unit cubes. How many of the 60 cubes can be seen from the outside?

9. Find four different digits selected from the set $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ to build two fractions each with a single digit numerator and single digit denominator so that the sum of the two fractions is less than 1 but as large as possible otherwise. Can you prove that your fraction is as large as it can be? Now suppose we want to build a pair of fractions, again using four different digits, whose sum is larger than 1 but otherwise as small as possible.

10. A special-8 number is one whose decimal representation consists entirely of 0’s and 8’s. For example 0.8808 and 0.08 are special numbers. What is the fewest special numbers whose sum is 1.

11. The numbers in the set $\{1, 2, 3, 4, 5, 6, \ldots , 15\}$ can be split up into four subsets so that the sum of the members of each subset is the same. One way to do this is $\{1, 2, 13, 14\}, \{3, 4, 11, 12\}, \{5, 6, 9, 10\}$ and $\{7, 8, 15\}$. Try splitting up the 20 element set $\{-6, -5, -4, \ldots , 0, 1, 2, 3, \ldots , 13\}$ into five sets each of which has the same sum of members.

12. The numbers 1, 2, 3, 7, 8, 9 are arranged in a multiplication table, with three along the top and the other three down the column. The multiplication table is completed and the sum of the nine entries is tabulated. What is the largest possible sum obtainable. Hint: can you find a way to think of this sum as the area of a rectangle?

13. The 8×10 grid below has numbers in half the squares. These numbers indicate the number of mines among the squares that share an edge with the given one. Use this information to find the exact location of all the mines. A square can have more than one mine.
14. Let N be the huge number

\[N = 123456789101112 \ldots 999 \]

obtained by writing down, in order, the representation of the first 999 positive integers.

(a) How many digits does N have?
(b) How many times does the digit 6 appear in N?
(c) What is the product of the 2009th digit and the 2010th digit of N?

15. **Inserting Plus Signs.**

Plus signs can be inserted in

\[1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \]

in any of six positions. For example, we could put ‘+’ signs in the second, fourth, and sixth places to get

\[12 + 34 + 56 + 7 = 109. \]

(a) Can one or more plus signs be inserted to achieve the number 100? If so, in how many ways can this be done?
(b) Suppose either a + or a − sign MUST be inserted in each position. What are the numbers that could result?
(c) Suppose a + sign or a − sign may be inserted in each of the eight positions of $1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9$. Can the number 100 be achieved?
(d) Now back to the first problem. How many numbers can be achieved by putting + signs into $1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7$?