March 26, 1999

The first 15 problems count 6 points each and the final one counts 20 points. Problems 1 through 12 are multiple choice and 13 through 15 are fill-in-the-blank. In the multiple choice section, circle the correct choice(s). You do not need to show your work on problems 1 through 15.

1. Which of the following numbers belong to the domain of the function \(h(x) = \sqrt{6 + x - x^2} \)? Circle all those that apply.

 (A) \(-2\) (B) 0 (C) 2 (D) 3 (E) 5

2. The circle whose equation is \(4x^2 + 4y^2 - 4x + 9y + 1 = 0 \) has a radius of

 (A) \(9/8\) (B) \(9/4\) (C) \(81/16\) (D) \(81/64\) (E) \(9/2\)

3. The graph of \(f(x) = ax^2 + bx + c \) is shown for certain values of \(a, b, \) and \(c \). Which of the following quantities are positive? Hint: \(f(1) = a \cdot 1^2 + b \cdot 1 + c \).
 Circle all that apply.

 \[
 \begin{array}{cccc}
 & & & \\
 & 4 & 3 & 2 & 1 & 0 & -1 & -2 & -3 & -4 \\
 & -4 & -3 & -2 & -1 & & & & & \\
 \end{array}
 \]

 (A) \(a\) (B) \(c\) (C) \(b^2 - 4ac\) (D) \(a + b + c\) (E) \(9a + 3b + c\)

4. Suppose \(g \) is defined by \(g(x) = \frac{4 - x}{3} \). Let \(f \) be the inverse of the function \(g \).
 Then \(f(2) = \)

 (A) \(-16\) (B) \(-2\) (C) \(1/3\) (D) 2 (E) 8
5. If the domain of the function \(f(x) = 2x^2 + 5 \) is the interval \([-2, 1]\), which of the following numbers belongs to the range? Circle all those that apply.

(A) -2 (B) 0 (C) 5 (D) 12 (E) 15

The next four questions refer to the functions \(f \) and \(g \). Let

\[
f(x) = 2x - 3 \quad \text{and} \quad g(x) = \begin{cases} |x| & \text{if } x < 3 \\ x^2 - 1 & \text{if } x \geq 3 \end{cases}
\]

6. What is \(g \circ f(-2) \)?

(A) 1 (B) 4 (C) 7 (D) 15 (E) 48

7. Compute \((f/g)(-1) + (f \cdot g)(3)\).

(A) \(-4\frac{5}{8}\) (B) -3 (C) 8 (D) \(5\frac{3}{8}\) (E) 19

8. Find a value of \(x \) for which \(g \circ f(x) = 0 \).

(A) -6 (B) -5 (C) 0 (D) 3/2 (E) 6

9. Suppose \(3 < x < 4 \). Which of the expressions describes the value of \(f(g(x)) \)?

(A) \(2|x|-3\) (B) \(2x-3\) (C) \(x^2-1\) (D) \((2x-3)^2-1\) (E) \(2x^2-5\)
The next three questions apply to the table given below: Suppose the functions \(f \) and \(g \) are given completely by the table of values shown.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
<th>(g(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

10. What is the value of \(f(g(f(2))) \)?

(A) 0 (B) 1 (C) 2 (D) 6 (E) 7

11. Solve the equation \(g(f(x)) = 7 \) for \(x \)

(A) 1 (B) 3 (C) 4 (D) 6 (E) 7

12. What is \(f(g(1 + 2) + f(6 - f(4))) \)?

(A) 1 (B) 3 (C) 4 (D) 5 (E) 7

The next few questions are short answer questions. Write your answer in the blank provided.

13. Solve for \(x \): \(\sqrt{3 + x} = 3\sqrt{x} \).

14. A \(4 \times 4 \times 4 \) cube is build from unit cubes. The entire outside surface is painted. How many of the 64 unit cubes receive some paint?

15. Suppose the curve \(y = 3x^2 + bx + 3 \) has exactly one \(x \) intercept. Find a value of \(b \)?
Work only one of the following two problems. If you show work on both, scratch out the work on the one you don’t want counted. **Show your work.**

16. Use the ‘completing the square’ technique to find the standard form of the quadratic function $y = x^2 + bx + c$ in terms of b and c. Then find the vertex of the parabola.

17. Find all x satisfying the inequality \(\frac{(x-1)(x+3)(x+6)}{(x+2)} \geq 0 \).