We define three functions, \(f, g \) and \(h \) as follows:
\[f(x) = x^2 - x, \quad g(x) = x + \frac{1}{x}, \quad h(x) = \sqrt{x + 2}. \]
Notice that the derivatives of these functions are pretty straightforward:
\[f'(x) = 2x - 1; \quad g'(x) = 1 - x^{-2}; \quad \text{and} \quad h'(x) = \frac{1}{2}(x + 2)^{-\frac{1}{2}}. \]
Now the three functions \(f, g, h \) can be composed in six different ways. One of these is
\[F(x) = f \circ g \circ h(x). \]
Let \(G, H, J, K, \) and \(L \) be the names of these functions. Find symbolic representations of each of these functions and their derivatives.

For example,
\[F(x) = (\sqrt{x + 2} + 1/\sqrt{x + 2})^2 - (\sqrt{x + 2} + 1/\sqrt{x + 2}) \]

\[F'(x) = 2 \left(\sqrt{x + 2} + 1/\sqrt{x + 2} \right) \left(\frac{1}{2} (x + 2)^{-1/2} - \frac{1}{2} (x + 2)^{-3/2} \right) - \left(\frac{1}{2} (x + 2)^{-1/2} - \frac{1}{2} (x + 2)^{-3/2} \right). \]

Alternatively, you can write
\[
\frac{d}{dx} f \circ g \circ h(x) = f'(g \circ h) \cdot \frac{d}{dx} g \circ h(x) = f'(g \circ h) \cdot g'(h(x)) \cdot h'(x),
\]
and then fill in each function based on the calculations above.