April 11, 2003

The first 6 problems count 5 points each. Problems 6 through 9 count as marked. In the multiple choice section, circle the correct choice (or choices). The total number of points available is 120.

Each of the next few items are true-false. To get full credit you must give a valid reason for your answer. Circle either True or False, and give your reason in the space provided. Generally, 2 points for the right t/f value and 3 points for the right reason.

1. True or false. If \(f''(x) < 0 \) on the interval \((a, c)\) and \(f''(x) > 0 \) on the interval \((c, b)\), then the point \((c, f(c))\) is a point of inflection of \(f \).

 Solution: True. This is basically the definition of inflection point.

2. True or false. If \(f'(c) = 0 \), then \(f \) has a relative maximum or a relative minimum at \(x = c \).

 Solution: False. The function can have neither a max nor a min at a stationary point. Look at \(f(x) = x^3 \) and \(x = 0 \).

3. True or false. If \(f \) has a relative maximum at \(x = c \), then \(f'(c) = 0 \).

 Solution: False. All we can tell is that \(c \) is a critical point. It might be a singular point.

4. True or false. If \(f'(c) = 0 \) and \(f''(c) < 0 \), then \(f \) has a relative maximum at \(x = c \).

 Solution: True. This is just the second derivative test.

5. True or false. If \(h(x) = \sqrt{x^2 - 4} \), then \(h'(x) = \frac{1}{2}(x^2 - 4)^{-1/2} \).

 Solution: False. Look up the chain rule.

6. True or false. The function \(g(x) = (x - 1)^{2/3} \) has a singular point at \(x = 1 \).

 Solution: True. Since \(g'(x) = 2(x - 1)^{-1/3}/3 = 2/3(x - 1)^{-1/3} \), you can see that \(g'(1) \) is not a number. Therefore \(x = 1 \) is a singular point.
On all the following questions, **show your work**.

7. (20 points) Sketch the graph of a function $g(x)$ satisfying the properties shown in the table below.

<table>
<thead>
<tr>
<th>x</th>
<th>$g(x)$</th>
<th>$g'(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Use the coordinate system given.

Solution: One possible graph is
8. (20 points) Let \(g(x) = (2x - 4)^2(x + 3)^2 \).

(a) Use the test interval technique (not a graphing calculator) to find the intervals over which \(g \) is increasing.

Solution: First, note that \(g'(x) = 2(2x - 4)(x + 3)[2x + 6 + 2x - 4] = 2(2x - 4)(x + 3)(4x + 2) \), so the critical points are \(x = -3, x = -1/2, \) and \(x = 2 \). Using the test interval technique on the intervals \((-\infty, -3), (-3, -1/2), (-1/2, 2) \) and \((2, \infty) \) with test points \(-4, -1, 0, \) and \(3 \), we can see that

<table>
<thead>
<tr>
<th>test point</th>
<th>2x-4</th>
<th>x+3</th>
<th>4x+2</th>
<th>sign of (g')</th>
</tr>
</thead>
<tbody>
<tr>
<td>-4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-1</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

We conclude that \(g(x) \) is increasing on the two intervals \((-3, -1/2) \) and \((2, \infty) \).

(b) Find and classify each critical point as a location of a. a relative maximum, b. a relative minimum, or c. neither a relative max nor a relative min.

Solution: We can use the second derivative test on the three critical points of \(g \). Since \(g''(x) = 2 \cdot 2(x + 3)(4x + 2) + 2(2x - 4)(4x + 2 + 4(x + 3)) \), by the product rule, it follows that \(g''(-3) = 200, g''(-1/2) = -100, \) and \(g''(2) = 200 \). The second derivative test now confirms what we felt, that is, there is a relative maximum at \(-1/2 \) and relative minimums at both \(-3 \) and \(2 \).

9. (15 points) Consider the rational function

\[
f(x) = \frac{(x^2 - 4)(2x + 1)}{(3x^2 - 3)(x - 2)}
\]

(a) Find the horizontal asymptote(s).

Solution: The coefficient of \(x^3 \) in the numerator is 2 while that in the denominator is 3, so \(y = 2/3 \) is the horizontal asymptote.

(b) Find the vertical asymptotes.

Solution: To find the vertical asymptotes, you must first reduce the fraction to lowest terms, which mean cancelling out the common factors,
in this case, just the \(x - 2 \)'s. This results in a denominator that has value 0 only at \(x = \pm 1 \), so these are the two vertical asymptotes.

(c) Compute \(\lim_{x \to \infty} f(x) \).

Solution: The limit in question is the same as the horizontal asymptote, \(\frac{2}{3} \).

10. (15 points) Four congruent \(x \times x \) squares from the corners of a cardboard rectangle that measures 16 \(\times \) 12. The sides are then folded upward to form a topless box.

(a) Find the volume \(V \) as a function of \(x \). What is the logical domain?

Solution: \(V(x) = (16 - 2x)(12 - 2x)x \).

(b) Compute \(V(0) \), \(V(1) \), \(V(2) \), and \(V(3) \).

Solution: \(V(0) = 0, V(1) = 14 \cdot 10 \cdot 1 = 140, V(2)12 \cdot 8 \cdot 2 = 192, \) and \(V(3) = 10 \cdot 6 \cdot 3 = 180. \)

(c) Find \(V'(x) \).

Solution:

\[
V'(x) = -2(12 - 2x)x + (16 - 2x)(\frac{d}{dx}(12 - 2x)x)
\]
\[
= -2(12 - 2x)x + (16 - 2x)[(-2)x + 1(12 - 2x)]
\]
\[
= -24x + 4x^2 + (16 - 2x)(-4x + 12)
\]
\[
= 12x^2 - 112x + 192
\]

(d) Use the results from the question above to determine the critical points of \(V \).

Solution: Use the quadratic formula to find that the critical point is \(c = \frac{14 - 2\sqrt{13}}{3} \approx 2.263. \) The other root of the quadratic is outside the domain of \(V \).

(e) Find the absolute maximum value of \(V \) and the value of \(x \) where it occurs.

Solution: Simply evaluate \(V \) at the two endpoints and the critical point to see that the maximum value of \(V \) is \(V(c) \approx 194.07 \).
11. (20 points) Compute each of the following derivatives.

(a) \(\frac{d}{dx} \sqrt{x^3 + 1} \)
Solution: \(\frac{d}{dx} \sqrt{x^3 + 1} = \frac{3x^2}{2\sqrt{x^3+1}}. \)

(b) \(\frac{d}{dx} (2x^2 + 1)^{10} \)
Solution: \(\frac{d}{dx} (2x^2 + 1)^{10} = 40x(2x^2 + 1)^9. \)

(c) \(\frac{d}{dx} \left(\frac{2x + 1}{x^2 + 1} \right) \)
Solution: \(\frac{d}{dx} \left(\frac{2x + 1}{x^2 + 1} \right) = -\frac{2(x^2 + x - 1)}{(x^2 + 1)^2}. \)

(d) \(\frac{d}{dx} (2x^2 + 1)(3x - 4) \)
Solution: \(\frac{d}{dx} (2x^2 + 1)(3x - 4) = 4x(3x - 4) + 3(2x^2 + 1) = 18x^2 - 16x + 3. \)