1. (10 points) Find the base 6 representation of 2000.

2. (10 points) Find the base 6 representation of $\frac{1}{5}$.

3. (10 points) Find a pair of relatively prime integers m and n for which $\frac{m}{n} = 1.2\overline{3}$. Two numbers are relatively prime if their greatest common divisor is 1.

4. (10 points) Find a base 7 digit d such that $2d16_8 = d405_7$.

5. (10 points) Find the best (winning) move in the game of Bouton’s Nim (17, 13, 12, 11).

6. (12 points) Let $M = 161,161$ and let $N = 12,376$.

 (a) Compute $LCM(M, N)$

 (b) Compute $GCD(M, N)$

 (c) Find the number of divisors of M.
7. (20 points) Look at the four equations below.

\[
\begin{align*}
2 &= 2 \cdot 1 \\
2 + 4 &= 3 \cdot 2 \\
2 + 4 + 6 &= 4 \cdot 3 \\
2 + 4 + 6 + 8 &= 5 \cdot 4
\end{align*}
\]

a. Write the next three equations in the sequence.

b. If the four equations above correspond to \(k = 1, 2, 3, \) and 4, what is the nth equation?

c. Prove by mathematical induction that the nth equation is true for all integers \(n \geq 1. \)

8. (10 points) Find the representations of the integers 1 through 13 in base \(-6\).
9. (15 points) Solve the equation $123x + 456y = 3$ for integers x and y.

10. (13 points) Prove that $2^n \leq n!$ for all integers $n \geq 4$.