It is important that you show your work. There are 125 points available on this test.

1. (15 points) Find a pair of integers m and n such that m/n is reduced and $m/n = 21.364$.

2. (20 points)

 (a) Find the base 6 representation of 129.

 (b) Find the base -6 representation of 129.

 (c) Find the base 2 representation of 6.125.

3. (20 points)

 (a) Use the division algorithm to find the unique integers r and q satisfying

 \[377 = 39q + r \quad \text{and} \quad 0 \leq r < 39. \]

 (b) Solve the decanting problem for containers of sizes 377 and 39; that is find integers x and y satisfying

 \[377x + 39y = d \]

 where d is the GCD of 39 and 377. containers of sizes 387 and 39; that is
4. (20 points) Notice that

\begin{align*}
1 &= 1 = 1^2 \\
1 + 3 &= 4 = 2^2 \\
1 + 3 + 5 &= 9 = 3^2 \\
1 + 3 + 5 + 7 &= 16 = 4^2
\end{align*}

(a) List the next three equations suggested by the pattern.

(b) Given that the four equations above are the 1st, 2nd, 3rd, and 4th, write the \(n \)th equation of the sequence. Notice that in the 4th equation, the last summand is 7 (not 4).

(c) Use mathematical induction to prove that the \(n \)th equation is true for all positive integer values of \(n \).
5. (15 points) Divisors Let p, q, and r be three different prime numbers. In terms of p, q, and r, compute

(a) $\text{GCD}(p^3q^2r, p^2qr^3)$
(b) $\text{LCM}(p^3q^2r, p^2qr^3)$
(c) the number of divisors of p^3q^2r.

6. (20 points) State the Fundamental Theorem of Arithmetic. Then use it to give an argument that the square root of 2 is irrational. Why is it not possible to prove that $\sqrt{4}$ is not rational using this method? Elaborate.

7. (15 points) Prove that for any integer $n \geq 5$, $2^n > n^2$.