February 14, 2001

Your name ______________________________

It is important that you show your work. There are 125 points available on this test.

1. (15 points) Find a pair of integers m and n such that m/n is reduced and $m/n = 21.364$.

Solution: Let $x = 21.364$. Compute $1000x - 10x$ to get $990x = 21151$. Divide by 990 to get $x = 21151/990$ and note that the numerator and denominator are relatively prime (ie, no common divisors bigger than 1).

2. (20 points)

(a) Find the base 6 representation of 129.

Solution: 333_6

(b) Find the base -6 representation of 129.

Solution: 433_6

(c) Find the base 2 representation of 6.125.

Solution: 110.001_2

3. (20 points)

(a) Use the division algorithm to find the unique integers r and q satisfying

$$377 = 39q + r$$

and $0 \leq r < 39$.

Solution: $377 = 39 \cdot 9 + 26$

(b) Solve the decanting problem for containers of sizes 377 and 39; that is find integers x and y satisfying

$$377x + 39y = d$$

where d is the GCD of 39 and 377. containers of sizes 387 and 39; that is

Solution: Repeated divisions followed by substitution results in $13 = 10 \cdot 39 - 1 \cdot 377$
4. (20 points) Notice that

\[
1 = 1 = 1^2 \\
1 + 3 = 4 = 2^2 \\
1 + 3 + 5 = 9 = 3^2 \\
1 + 3 + 5 + 7 = 16 = 4^2
\]

(a) List the next three equations suggested by the pattern.

Solution:

\[
1 + 3 + 5 + 7 + 9 = 25 = 5^2 \\
1 + 3 + 5 + 7 + 9 + 11 = 36 = 6^2 \\
1 + 3 + 5 + 7 + 9 + 11 + 13 = 49 = 7^2
\]

(b) Given that the four equations above are the 1st, 2nd, 3rd, and 4th, write the nth equation of the sequence. Notice that in the 4th equation, the last summand is 7 (not 4).

Solution: \(1 + 3 + 5 + 7 + 9 + \cdots + (2n - 1) = n^2\)

(c) Use mathematical induction to prove that the nth equation is true for all positive integer values of n.

Solution: The base case for the proof is the first equation above, \(1 = 1^2\). Given that \(1 + 3 + 5 + 7 + 9 + \cdots + (2n - 1) = n^2\) holds for some \(n \geq 1\), consider the left side of \(P(n + 1)\). Note that \(1 + 3 + 5 + 7 + 9 + \cdots + (2n - 1) + (2(n + 1) - 1) = n^2 + (2(n + 1) - 1) = n^2 + 2n + 1 = (n + 1)^2\).

By PMI, the proposition \(P(n)\) is true for all \(n \geq 1\).
5. (15 points) Divisors Let $p, q,$ and r be three different prime numbers. In terms of $p, q,$ and $r,$ compute

(a) GCD(p^3q^2r, p^2qr^3)

Solution: p^2qr

(b) LCM(p^3q^2r, p^2qr^3)

Solution: $p^3q^2r^3$

(c) the number of divisors of p^3q^2r.

Solution: $(3 + 1)(2 + 1)(1 + 1) = 24$

6. (20 points) State the Fundamental Theorem of Arithmetic. Then use it to give an argument that the square root of 2 is irrational. Why is it not possible to prove that $\sqrt{4}$ is not rational using this method? Elaborate.

Solution: FTA: Each integer $N > 1$ can be factored uniquely as a product of primes. Suppose $\sqrt{2}$ is rational. Then it can be expressed as m/n, for integers m and n. Square both sides to get $2 = m^2/n^2$ or $2n^2 = m^2$. If $n = p_1^{e_1}p_2^{e_2} \cdots p_k^{e_k}$ and $m = q_1^{f_1}q_2^{f_2} \cdots q_l^{f_l}$. Thus $n^2 = p_1^{2e_1}p_2^{2e_2} \cdots p_k^{2e_k}$ and $m^2 = q_1^{2f_1}q_2^{2f_2} \cdots q_l^{2f_l}$. It follows that $2n^2$ factors into an odd number of primes and m^2 factors into an even number of primes. Therefore the two numbers m^2 and $2n^2$ cannot be equal.

7. (15 points) Prove that for any integer $n \geq 5$, $2^n > n^2$.

Solution: The base case is simply $2^5 = 32 > 5^2 = 25$. Assume $P(n) : 2^n > n^2$, and consider the left side of $P(n+1)$. Note that $2^{n+1} = 2 \cdot 2^n > 2 \cdot n^2 > n^2 + 5n > n^2 + 3n > n^2 + 2n + 1 = (n + 1)^2$, so the inductive step is valid as well. By PMI, it follows that $P(n)$ is true for all $n \geq 5$.