March 26, 2004 Name

There are 135 points available on this test. Each question is marked with its value. To get full credit for a problem, you must show your work. Correct answers with incorrect supporting work will receive substantially reduced credit.

1. (15 points) Let \(p(x) = x^2 - 4x + 5 \).

 (a) Compute \(p'(x) \)

 (b) Compute \(p''(x) \)

 (c) Use the information in (a) to find an equation for the line tangent to the graph of \(p \) at the point \((1, 2)\).

2. (20 points) Consider the astroid \(x^{2/3} + y^{2/3} = 4 \).

 (a) Show that the point \((-3\sqrt{3}, 1)\) belongs to the graph.

 (b) Find \(y' \) as a function of \(x \) and \(y \) using implicit differentiation.

 (c) Find the slope of the line tangent to the curve at the point \((-3\sqrt{3}, 1)\).

 (d) Find an equation for the tangent line whose slope you found above.
Math 1241 Section 6 Calculus Test 3

3. (30 points) Suppose the functions f and g are given partially by the table of values shown. The next problems refer to the functions f and g given in the tables. Consider the table of values given for the functions f, f', g, and g':

<table>
<thead>
<tr>
<th>x</th>
<th>$f(x)$</th>
<th>$f'(x)$</th>
<th>$g(x)$</th>
<th>$g'(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>6</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

(a) Let $K(x) = f \circ g(x)$. Compute $K'(3)$

(b) Let $L(x) = f(x) \cdot g(x)$. Compute $L'(2)$.

(c) Let $U(x) = f \circ f(x)$. Compute $U'(1)$.

(d) Let $V(x) = g(x)/f(x)$. Compute $V'(4)$.

(e) Let $W(x) = (g(x))^2$. Compute $W'(5)$.

(f) Let $Z(x) = g(x^2 \cdot f(x))$. Compute $Z'(1)$.
4. (25 points)

(a) Find \(\frac{d}{dx}(\sin x) \)

(b) Write an equation involving the functions \(\sin \) and \(\sin^{-1} \), the composition operation, and the identity function. In other words write an equation that shows you know what \(\sin^{-1} x \) is.

(c) Differentiate both sides of the equation in (b).

(d) Use the result in (c) to find an expression for \(\frac{d}{dx}(\sin^{-1} x) \).

(e) Let \(h(x) = \sin^{-1}(x^2) \). Compute \(h'(x) \).
5. (25 points) Compute the following derivatives.

(a) \(\frac{d}{dx} e^{\sin x} \)

(b) \(\frac{d}{dx} \ln(\tan x) \)

(c) \(\frac{d}{dx} \sqrt{x} \ln x \)

(d) \(\frac{d}{dx} (\cos(x^2))^3 \)

(e) \(\frac{d}{dx} \tan^{-1}(2x) \)
6. (20 points) Suppose \(f \) is defined by:

\[
 f(x) = \begin{cases} \ln(3x) & \text{if } x > 0 \\ \ln(-x) & \text{if } x < 0 \end{cases}
\]

(a) Find \(f'(3) \).

(b) Find \(f'(-e) \).

(c) Find an equation for the line tangent to the graph of \(f \) at the point \((-e, f(-e))\).