1) \(\overline{AB} \cong \overline{AC} \cong \overline{CD} \), \(\overline{AD} \cong \overline{DB} \)
Determine \(m\angle D \)

2) \(\overline{AB} \cong \overline{AC} \cong \overline{CD} \), \(\overline{AD} \cong \overline{DB} \), \(AB = 1 \)
Determine the exact value of the length of \(\overline{CB} \)
Determine the exact value of the length of \(\overline{AD} \)
3) The perimeter of a regular pentagon is 5 cm. Determine the length of one of the diagonals of the pentagon.

4) ABCDE is a regular pentagon.
The center of the pentagon is O
\(AR \perp RD; AQ \perp QC; AP \perp DC \)
\(OP = 1 \)
Find \(AR + AO + AQ \)

5) An isosceles triangle has base 10 and the medians of its legs are perpendicular. Find the sum of the lengths of the three medians of the triangle.

6) \(\overline{AW} \perp \overline{WG} \)
R is the midpoint of \(\overline{AW} \)
H is the midpoint of \(\overline{GW} \)
\(AH = 10, GR = 15 \)
Find the length of \(\overline{AG} \)
Find the length of \(\overline{WK} \)
7) SACR is a rectangle SR=6, SA=8; T,O,L,M,E,& N are midpoints of FA, FC, RC, FR, SF & SA respectively. Find the ratio of the area of hexagon TOLMEN to rectangle SACR.

8) JV is tangent to the smaller of the two concentric circles. $JV = 16$. Find the largest possible area of the shaded region.
9) In $\triangle QSP$, W is on \overline{QP}, T is on \overline{PS}, and R is on \overline{QS}. $\overline{QT} \cap \overline{PR} \cap \overline{WS} = V$

$QR:RS = 9:2$; $PT:TS = 6:7$ Find each of the following ratios.

$QV:VT$, $PV:VR$, $PW:PQ$, and $WV:VS$

Find the ratio of the area of $\triangle SVQ$ to the area of VQW

10) Each of the circles is tangent to the square or the circles next to it. The circles fill the square and the ones at either end are tangent to it. If there are n circles along the top, and n circles along the side, and each circle has radius r, what is the area of the shaded region?