You must work three of the following four questions for full credit.

1. Do the following
 a) Let μ be a finite measure on Borrel σ-algebra of subsets of \mathbb{R}. The set $S(\mu)$ is called the support of μ if for any $x \in S(\mu)$ and arbitrary $\epsilon > 0$, $\mu([x-\epsilon,x+\epsilon]) > 0$. Prove that $S(\mu)$ is a closed set.
 b) Let μ consist of the atoms at the points $\{x_n = \frac{1}{2^n}, n = 0, 1, 2, \cdots\}$ with $\mu(\{x_n\}) = \frac{1}{2^n}$. Describe the support of μ. Find the measure $\mu(S(\mu))$.

Real Analysis I Preliminary Exam, Summer 2013
2. Let $f(x)$ be a Lebesgue measurable function on $[0, 1]$.
 a) Prove that $f^3(x)$ is also Lebesgue measurable on $[0, 1]$.
 b) Provide an example of g such that $g^2(x)$ is Lebesgue measurable, but $g(x)$
 is not Lebesgue measurable on $[0, 1]$.
3. Let \(\{f_n\} \) and \(\{g_n\}, g_n \geq 0, \) be sequences of Lebesgue \((\mu) \) measurable functions on \([0,1]\) that converge pointwise to \(f \) and \(g \) respectively. Suppose further that

\begin{align*}
&\text{a} \quad |f_n| \leq g_n, \forall n \in \mathbb{N} \quad \text{and} \\
&\text{b} \quad \lim_{n \to \infty} \int_{[0,1]} g_n d\mu = \int_{[0,1]} g d\mu < \infty.
\end{align*}

Prove that

\[
\lim_{n \to \infty} \int_{[0,1]} f_n d\mu = \int_{[0,1]} f d\mu.
\]
4. Let \(f(x) \) be a monotonically increasing function on \([0,1]\). Let \(S \) be the set of points of discontinuity of \(f(x) \). For \(c \in (0,1) \) we write

\[
d(c) \equiv \lim_{x \to c^+} f(x) - \lim_{x \to c^-} f(x).
\]

a) Let \(0 < c_1 < c_2 < \cdots < c_k < 1 \) be \(k \) points in \(S \). Prove that

\[
d(c_1) + \cdots + d(c_k) \leq f(1) - f(0).
\]

b) Prove that \(S \) is a countable set.