REAL ANALYSIS PRELIMINARY EXAMINATION FALL 2004
Wednesday, August 18, 2004 9:00 a.m. - 12:00 noon

INSTRUCTIONS: Please choose six (6) out of the following eight (8) problems.
Each solution you submit should be on a separate page (or pages).
Be sure your name and the problem number appear with each solution.

1) Let \(C \) be any collection of disjoint open intervals in \(\mathbb{R} \). Prove that \(C \) is at most
 countable.

2) Construct a set in \(\mathbb{R} \) which is countably infinite, which is neither open nor closed, and
 belongs to both \(G_\delta \) and \(F_\sigma \).

3) (a) Prove that if \((X, \mathcal{M}, \mu) \) is a measure space, \(1 \leq p < \infty \), and \(g \in L^p(X, \mathcal{M}, \mu) \) then

 \[\mu(\{x \in X : |g(x)| \geq t\}) \leq \left(\frac{\|g\|_{L^p}}{t} \right)^p \text{ for all } 0 < t < \infty. \]

 (b) Use the inequality in (a) with \(p = 1 \) to prove that if \(\int_X |g(x)|d\mu = 0 \) then
 \(g(x) = 0 \) a.e.

4) Let \(m \) be Lebesgue measure and \(B \) the Borel sets. Let the measure \(\mu \) on \(([0, 1], B) \)
 have an absolutely continuous (with respect to \(m \)) component with density \(\rho(x) = x \) and
 a discrete component with atoms at \(1/4, 1/2, \) and \(3/4, \) and with respective masses
 \(m_1 = 1/3, m_2 = 1/3, m_3 = 1/3. \) Calculate \(\int_0^1 x^2d\mu. \)

5) Prove that if \(\varphi(x) \) is a positive continuous function on \(\mathbb{R} \) then
 \[\lim_{n \to \infty} \int_0^\infty \frac{\varphi(x)}{(\varphi(x))^2 + \frac{1}{x^2}} e^{-x}dx = 1. \]

6) Let \((X, \mathcal{M}, \mu) \) be a \(\sigma \)-finite measure space and let \(L^p = L^p(X, \mathcal{M}, \mu), p \geq 1. \) For a
 set \(A \subset X \) let \(\chi_A \) denote the characteristic function of \(A, \) i.e. \(\chi_A(x) = 1 \) if \(x \in A \) and
 \(\chi_A(x) = 0 \) if \(x \notin A. \)
 (a) Show that if \(f, g \in L^2 \) then \(fg \in L^1. \)
 (b) Suppose that \(f \perp 1_A \forall A \in \mathcal{M} \) with \(\mu(A) < \infty. \) Prove that \(f = 0 \) a.e. (\(\mu \)).

7) Let \(\langle \varphi_n \rangle_{n=1}^\infty \) be an orthonormal system for a Hilbert space \(H. \) Given \(x \in H \) let
 \(\alpha_n = \langle x, \varphi_n \rangle \) where \((,) \) denotes the inner product in \(H. \)
 Prove that \(\lim_{n \to \infty} \alpha_n = 0. \)

8) Let \(X = \{0, 1, 2, 3, 4\} \) and let \(\sum \) be the \(\sigma \)-algebra of all subsets of \(X. \) Define measures
 \(\alpha \) and \(\beta \) on \(\sum \) via the following table:
 \[
 \begin{array}{cccccc}
 & 0 & 1 & 2 & 3 & 4 \\
 \alpha & 1/2 & 0 & 3 & 2 & 0 \\
 \beta & 2/3 & 0 & 8 & 2 & 5 \\
 \end{array}
 \]
 (a) Is \(\alpha \ll \beta? \) Justify your answer.
 (b) Is \(\beta \ll \alpha? \) Justify your answer.

If the answer is yes in either case, find the appropriate Radon-Nikodym derivative(s).