1. Assume the functions described below have both a first derivative and a second derivative everywhere. Answer each of the following using the appropriate response from POSITIVE, NEGATIVE, ZERO, or CANNOT DETERMINE
 a. If \(f \) is increasing at \(x=3 \), then
 \[f'(3) = \quad f''(3) = \quad \]
 b. If \(f \) has a relative maximum at \(x=7 \), then
 \[f'(7) = \quad f''(7) = \quad \]
 c. If \(f \) has a relative minimum at \(x=-6 \), then
 \[f'(-6) = \quad f''(-6) = \quad \]
 d. If \(f \) is decreasing at \(x=32 \), then
 \[f'(32) = \quad f''(32) = \quad \]
 e. If \(f \) has an inflection point at \(x=41 \), then
 \[f'(41) = \quad f''(41) = \quad \]

2. Assume that \(f \) is differentiable everywhere and
 \[f'(0) = \frac{8}{9} \quad f''(0) = -2 \quad f'(2) = \frac{1}{4} \]
 \[f'(3) = 0 \quad f''(3) = -1 \quad f'(5) = -3 \]
 \[f''(5) = 1 \quad f'(7) = 0 \quad f''(7) = \frac{5}{3} \]
 a. List two points where \(f \) is increasing.

 b. Where does \(f \) have a relative maximum?

 c. Where does \(f \) have a relative minimum?
3. Consider the function \(f(x) = 3x^2 + 12x - 36 \) on \([-10, 8]\)

a. Find where \(f \) is increasing and where \(f \) is decreasing.

b. Find where \(f \) is concave upward and where \(f \) is concave downward.

c. List all candidates for relative maxima and relative minima.

d. Determine:
 The relative maxima
 The relative minima
e. Find the line tangent to \(f \) at \(x=1 \).

4. Differentiate each of the following functions (ie: find the derivatives).

a. \(f(x) = x^5 - 3x^2 + 11 \)

b. \(f(x) = (5x^2 + 7x +6)^7 \)

c. \(f(x) = \frac{7}{x^3} \)

d. \(f(x) = x^3(5x^2 + 7x +6)^7 \)

e. \(f(x) = \frac{7}{x^3} \)
f. \(f(x) = x^3 \sin(x) \)

g. \(f(x) = \sin(x^3) \)

h. \(f(x) = \tan(x) \sec(x) \)

i. \(f(x) = \frac{(x^2+x)^4}{3x+1} \)

j. \(f(x) = \frac{6x^2-2x+7}{5x^2+4x+7} \)

k. \(f(x) = \left(\frac{x^2+1}{3x+7}\right)^3 \sin(4x) \)