Homework Set 9

Use synthetic division or long division to determine whether \(P(x) \) is divisible by the given polynomial. If it is not divisible, then give the resulting remainder.

1. \(P(x) = x^2 + 4x + 1, \ x - 1 \)
 \[
 \begin{array}{c|ccc}
 \hline
 \text{x = 1} & 1 & 4 & 1 \\
 \hline
 & 1 & 5 \\
 \hline
 & 1 & 5 & 6 \\
 \end{array}
 \]
 not divisible
 \[R = 6 \]

2. \(P(x) = x^3 - x^2 + x - 1, \ x + 2 \)
 \[
 \begin{array}{c|cccc}
 \hline
 \text{x = -2} & 1 & -1 & 1 & -1 \\
 \hline
 & -2 & 6 & -14 \\
 \hline
 & 1 & -3 & 7 & -15 \\
 \end{array}
 \]
 not divisible
 \[R = -15 \]

3. \(P(x) = x^4 - 16, \ x - 2 \)
 \[
 \begin{array}{c|ccccc}
 \hline
 \text{x = 2} & 1 & 0 & 0 & 0 & -16 \\
 \hline
 & 2 & 4 & 8 & 16 \\
 \hline
 & 1 & 2 & 4 & 8 & 0 \\
 \end{array}
 \]
 divisible

4. \(P(x) = -4x^3 + 5x^2 - 7, \ x - 3 \)
 \[
 \begin{array}{c|cccc}
 \hline
 \text{x = 3} & -4 & 5 & 0 & -7 \\
 \hline
 & -12 & -21 & -63 \\
 \hline
 & -4 & -7 & -21 & -70 \\
 \end{array}
 \]
 not divisible
 \[R = -70 \]

5. \(P(x) = x^4 + 3x^3 + x - 5, \ x^2 - 3 \)
 \[
 \frac{x^2 + 3x + 3}{x^4 + 3x^3 + 0x^2 + x - 5} \]
 \[
 \frac{x^4 - 0x^3 - 3x^2}{3x^3 + 3x^2 + x} \]
 \[
 \frac{3x^2 + 0x^2 - 9x}{3x^2 + 10x - 5} \]
 \[
 \frac{3x^2 + 10x - 5}{10x + 4} \]
 not divisible
 \[R = 10x + 4 \]
Look at the given graph of a polynomial. Determine what its equation is.

Hint: use the y-intercept and the x-intercepts and what degree polynomial it is.

6. \[y = a(x-(-3))(x-0)(x-2) \]
\[y = a(x+3)(x)(x-2) \]
2 curves \(\Rightarrow \) deg 3
x-intercept \(\Rightarrow \) \(x = -3, 0, 2 \)

Point: \((0,0) \)
so with our info we can assume
\[y = x(x-2)(x+3) \]
\[= x^3 + x^2 - 6x \]

7. \[y = a(x+3)(x+2)(x-1)(x-5) \]
have point: \((0,15) \)
\[15 = a(3x2)(-1x-5) \]
\[a = \frac{15}{10} \]

Consider the given polynomial. Sketch a graph of the polynomial **without using a calculator**.

Hint: identify how many curves it should have, where its y-intercept is, where its x-intercept(s) is/are, is it even/odd, etc.

8. \[f(x) = x^3 - 2x^2 - x + 2 \]
\[= x^2(x - 2) - (x - 2) \]
\[= (x^2 - 1)(x - 2) \]
\[x = \text{int} \; x = 1, -1, 2 \]
\[y = \text{int} \; y = 2 \]

9. \[f(x) = 2x(x - 1)^2(x + 1)(x + 4) \]
\[x = \text{int} \; x = 0, 1, -1, -4 \]
\[y = \text{int} \; y = 0 \]
\[y = x^5 \]

10. \[f(x) = x^4 - 8x^3 - 33x^2 \]
\[= x^2(x^2 - 8x - 33) \]
\[= x^2(x - 11)(x + 3) \]
\[x = \text{int} \; x = 0, 11, -3 \]
\[y = \text{int} \; y = 0 \]