Computational Methods for Electromagnetic Phenomena

Electrostatics in Solvation, Scattering, and Electron Transport

Wei Cai

“A well-written book which will be of use to a broad range of students and researchers in applied mathematics, applied physics and engineering.”

Leslie Greengard, Courant Institute, New York University

“...a truly unique book that covers a variety of computational methods for several important physical (electromagnetics) problems in a rigorous manner with a great depth.”

Jian-Ming Jin, University of Illinois at Urbana-Champaign

“...the organization of the material and the exposition of physical and algorithmic concepts is superb and make the book accessible to researchers and students in every discipline.”

George Karniadakis, Brown University

A unique and comprehensive graduate text and reference on numerical methods for electromagnetic phenomena, from atomistic to continuum scales, in biology, optical-to-micro waves, photonics, nano-electronics, and plasmas.

The state-of-the-art numerical methods described include:

- Statistical fluctuation formulae for dielectric constants
- Particle mesh Ewald, fast multipole method, and image-based reaction field methods for long-range interactions
- High-order singular/hyper-singular (Nyström collocation/Galerkin) boundary and volume integral methods in layered media for Poisson–Boltzmann electrostatics, electromagnetic wave scattering, and electron density waves in quantum dots
- Absorbing and UPML boundary conditions
- High-order hierarchical Nedelec edge elements
- High-order discontinuous Galerkin (DG) and Yee scheme time-domain methods
- Finite element and plane wave frequency-domain methods for periodic structures
- Generalized DG beam propagation methods for optical waveguides
- NEGF (non-equilibrium Green’s function) and Wigner kinetic methods for quantum transport
- High-order WENO, Godunov and central schemes for hydrodynamic transport
- Vlasov–Fokker–Planck, PIC, and constrained MHD transport in plasmas

Wei Cai has been a full Professor at the University of North Carolina since 1999. He has also taught and conducted research at Peking University, Fudan University, Shanghai Jiaotong University, and the University of California, Santa Barbara. He has published over 90 refereed journal articles, and was awarded the prestigious Feng Kang prize in scientific computing in 2008.
Computational Methods for Electromagnetic Phenomena

A unique and comprehensive graduate text and reference on numerical methods for electromagnetic phenomena, from atomistic to continuum scales, in biology, optical-to-micro waves, photonics, nano-electronics, and plasmas.

The state-of-the-art numerical methods described include:

- Statistical fluctuation formulae for dielectric constants
- Particle mesh Ewald, fast multipole method, and image-based reaction field methods for long-range interactions
- High-order singular/hyper-singular (Nyström collocation/Galerkin) boundary and volume integral methods in layered media for Poisson–Boltzmann electrostatics, electromagnetic wave scattering, and electron density waves in quantum dots
- Absorbing and UPML boundary conditions
- High-order hierarchical Nédélec edge elements
- High-order discontinuous Galerkin (DG) and Yee scheme time-domain methods
- Finite element and plane wave frequency-domain methods for periodic structures
- Generalized DG beam propagation methods for optical waveguides
- NEGF (non-equilibrium Green’s function) and Wigner kinetic methods for quantum transport
- High-order WENO, Godunov and central schemes for hydrodynamic transport
- Vlasov–Fokker–Planck, PIC, and constrained MHD transport in plasmas

Wei Cai has been a full Professor at the University of North Carolina since 1999. He has also taught and conducted research at Peking University, Fudan University, Shanghai Jiaotong University, and the University of California, Santa Barbara. He has published over 90 refereed journal articles, and was awarded the prestigious Feng Kang prize in scientific computing in 2005.
“A well-written book which will be of use to a broad range of students and researchers in applied mathematics, applied physics and engineering. It provides a clear presentation of many topics in computational electromagnetics and illustrates their importance in a distinctive and diverse set of applications.”

— Leslie Greengard, Professor of Mathematics and Computer Science, Courant Institute, New York University

“... This is a truly unique book that covers a variety of computational methods for several important physical (electromagnetics) problems in a rigorous manner with a great depth. It will benefit not only computational mathematicians, but also physicists and electrical engineers interested in numerical analysis of electrostatic, electrodynamic, and electron transport problems. The breadth (both in terms of physics and numerical analysis) and depth are very impressive. I like, in particular, the way the book is organized: A physical problem is described clearly first and then followed by the presentation of relevant state-of-the-art computational methods...”

— Jian-Ming Jin, Y. T. Lo Chair Professor in Electrical and Computer Engineering, University of Illinois at Urbana-Champaign

“This book is a great and unique contribution to computational modeling of electromagnetic problems across many fields, covering in depth all interesting multi-scale phenomena, from electrostatics in biomolecules, to EM scattering, to electron transport in plasmas, and quantum electron transport in semiconductors. It includes both atomistic descriptions and continuum based formulations with emphasis on long-range interactions and high-order algorithms, respectively. The book is divided into three main parts and includes both established but also new algorithms on every topic addressed, e.g. fast multipole expansions, boundary integral equations, high-order finite elements, discontinuous Galerkin and WENO methods. Both the organization of the material and the exposition of physical and algorithmic concepts is superb and make the book accessible to researchers and students in every discipline.”

— George Karniadakis, Professor of Applied Mathematics, Brown University

“This is an impressive ... excellent book for those who want to study and understand the relationship between mathematical methods and the many different physical problems they can model and solve.”

— Weng Cho Chew, First Y. T. Lo Endowed Chair Professor in Electrical and Computer Engineering, University of Illinois at Urbana-Champaign
Computational Methods for Electromagnetic Phenomena

Electrostatics in Solvation, Scattering, and Electron Transport

WEI CAI
University of North Carolina
Contents

Foreword
Preface

Part I Electrostatics in solvation

1 Dielectric constant and fluctuation formulae for molecular dynamics
1.1 Electrostatics of charges and dipoles
1.2 Polarization \mathbf{P} and displacement flux \mathbf{D}
1.2.1 Bound charges induced by polarization
1.2.2 Electric field $\mathbf{E}_{\text{pol}}(\mathbf{r})$ of a polarization density $\mathbf{P}(\mathbf{r})$
1.2.3 Singular integral expressions of $\mathbf{E}_{\text{pol}}(\mathbf{r})$ inside dielectrics
1.3 Clausius–Mossotti and Onsager formulae for dielectric constant
1.3.1 Clausius–Mossotti formula for non-polar dielectrics
1.3.2 Onsager dielectric theory for dipolar liquids
1.4 Statistical molecular theory and dielectric fluctuation formulae
1.4.1 Statistical methods for polarization density change $\Delta \mathbf{P}$
1.4.2 Classical electrostatics for polarization density change $\Delta \mathbf{P}$
1.4.3 Fluctuation formulae for dielectric constant ϵ
1.5 Appendices
1.5.1 Appendix A: Average field of a charge in a dielectric sphere
1.5.2 Appendix B: Electric field due to a uniformly polarized sphere
1.6 Summary

2 Poisson–Boltzmann electrostatics and analytical approximations
2.1 Poisson–Boltzmann (PB) model for electrostatic solvation
2.1.1 Debye–Hückel Poisson–Boltzmann theory
2.1.2 Helmholtz double layer and ion size effect
2.1.3 Electrostatic solvation energy
2.2 Generalized Born (GB) approximations of solvation energy
2.2.1 Still’s generalized Born formulism
2.2.2 Integral expression for Born radii
2.2.3 FFT-based algorithm for the Born radii
2.3 Method of images for reaction fields

Foreword: page xiv
Preface: xv

Part I Electrostatics in solvation: 1

1 Dielectric constant and fluctuation formulae for molecular dynamics: 3

1.1 Electrostatics of charges and dipoles
1.2 Polarization \mathbf{P} and displacement flux \mathbf{D}
1.2.1 Bound charges induced by polarization
1.2.2 Electric field $\mathbf{E}_{\text{pol}}(\mathbf{r})$ of a polarization density $\mathbf{P}(\mathbf{r})$
1.2.3 Singular integral expressions of $\mathbf{E}_{\text{pol}}(\mathbf{r})$ inside dielectrics
1.3 Clausius–Mossotti and Onsager formulae for dielectric constant
1.3.1 Clausius–Mossotti formula for non-polar dielectrics
1.3.2 Onsager dielectric theory for dipolar liquids
1.4 Statistical molecular theory and dielectric fluctuation formulae
1.4.1 Statistical methods for polarization density change $\Delta \mathbf{P}$
1.4.2 Classical electrostatics for polarization density change $\Delta \mathbf{P}$
1.4.3 Fluctuation formulae for dielectric constant ϵ
1.5 Appendices
1.5.1 Appendix A: Average field of a charge in a dielectric sphere
1.5.2 Appendix B: Electric field due to a uniformly polarized sphere
1.6 Summary

2 Poisson–Boltzmann electrostatics and analytical approximations: 26

2.1 Poisson–Boltzmann (PB) model for electrostatic solvation
2.1.1 Debye–Hückel Poisson–Boltzmann theory
2.1.2 Helmholtz double layer and ion size effect
2.1.3 Electrostatic solvation energy
2.2 Generalized Born (GB) approximations of solvation energy
2.2.1 Still’s generalized Born formulism
2.2.2 Integral expression for Born radii
2.2.3 FFT-based algorithm for the Born radii
2.3 Method of images for reaction fields
2.3.1 Methods of images for simple geometries 45
2.3.2 Image methods for dielectric spheres 47
2.3.3 Image methods for dielectric spheres in ionic solvent 53
2.3.4 Image methods for multi-layered media 55
2.4 Summary 59

3 Numerical methods for Poisson–Boltzmann equations 60
3.1 Boundary element methods (BEMs) 60
 3.1.1 Cauchy principal value (CPV) and Hadamard finite part (p.f.) 61
 3.1.2 Surface integral equations for the PB equations 65
 3.1.3 Computations of CPV and Hadamard p.f. and collocation BEMs 71
3.2 Finite element methods (FEMs) 82
3.3 Immersed interface methods (IIMs) 85
3.4 Summary 88

4 Fast algorithms for long-range interactions 89
4.1 Ewald sums for charges and dipoles 89
4.2 Particle-mesh Ewald (PME) methods 96
4.3 Fast multipole methods for N-particle electrostatic interactions 98
 4.3.1 Multipole expansions 98
 4.3.2 A recursion for the local expansions ($0 \rightarrow L$-level) 102
 4.3.3 A recursion for the multipole expansions ($L \rightarrow 0$-level) 104
 4.3.4 A pseudo-code for FMM 104
 4.3.5 Conversion operators for electrostatic FMM in \mathbb{R}^3 105
4.4 Helmholtz FMM of wideband of frequencies for N-current source interactions 107
4.5 Reaction field hybrid model for electrostatics 110
4.6 Summary 116

Part II Electromagnetic scattering 117

5 Maxwell equations, potentials, and physical/artificial boundary conditions 119
5.1 Time-dependent Maxwell equations 119
 5.1.1 Magnetization \mathbf{M} and magnetic field \mathbf{H} 120
5.2 Vector and scalar potentials 122
 5.2.1 Electric and magnetic potentials for time-harmonic fields 123
5.3 Physical boundary conditions for \mathbf{E} and \mathbf{H} 125
 5.3.1 Interface conditions between dielectric media 125
 5.3.2 Leontovich impedance boundary conditions for conductors 127
 5.3.3 Sommerfeld and Silver–Müller radiation conditions 129
5.4 Absorbing boundary conditions for \mathbf{E} and \mathbf{H} 132
5.4.1 One-way wave Engquist–Majda boundary conditions 132
5.4.2 High-order local non-reflecting Bayliss–Turkel conditions 134
5.4.3 Uniaxial perfectly matched layer (UPML) 138
5.5 Summary 144

6 Dyadic Green's functions in layered media 145
6.1 Singular charge and current sources 145
6.1.1 Singular charge sources 145
6.1.2 Singular Hertz dipole current sources 147
6.2 Dyadic Green's functions \(\mathcal{G}_E(\mathbf{r}|\mathbf{r}') \) and \(\mathcal{G}_H(\mathbf{r}|\mathbf{r}') \) 148
6.2.1 Dyadic Green's functions for homogeneous media 149
6.2.2 Dyadic Green's functions for layered media 150
6.2.3 Hankel transform for radially symmetric functions 150
6.2.4 Transverse versus longitudinal field components 152
6.2.5 Longitudinal components of Green's functions 153
6.3 Dyadic Green's functions for vector potentials \(\mathcal{G}_A(\mathbf{r}|\mathbf{r}') \) 157
6.3.1 Sommerfeld potentials 158
6.3.2 Transverse potentials 160
6.4 Fast computation of dyadic Green's functions 160
6.5 Appendix: Explicit formulae 165
6.5.1 Formulae for \(\tilde{G}_1, \tilde{G}_2, \) and \(\tilde{G}_3, \) etc. 165
6.5.2 Closed-form formulae for \(\tilde{\psi}(k_\rho) \) 167
6.6 Summary 169

7 High-order methods for surface electromagnetic integral equations 170
7.1 Electric and magnetic field surface integral equations in layered media 170
7.1.1 Integral representations 170
7.1.2 Singular and hyper-singular surface integral equations 175
7.2 Resonance and combined integral equations 182
7.3 Nyström collocation methods for Maxwell equations 185
7.3.1 Surface differential operators 185
7.3.2 Locally corrected Nyström method for hyper-singular EFIE 186
7.3.3 Nyström method for mixed potential EFIE 190
7.4 Galerkin methods and high-order RWG current basis 191
7.4.1 Galerkin method using vector–scalar potentials 191
7.4.2 Functional space for surface current \(\mathbf{J}(\mathbf{r}) \) 192
7.4.3 Basis functions over triangular–triangular patches 194
7.4.4 Basis functions over triangular–quadrilateral patches 198
7.5 Summary 203

8 High-order hierarchical Nédélec edge elements 205
8.1 Nédélec edge elements in \(H(\text{curl}) \) 205
8.1.1 Finite element method for \(\mathbf{E} \) or \(\mathbf{H} \) wave equations 206
Contents

10.7 Appendix: Auxiliary differential equation (ADE) DG methods for dispersive Maxwell equations 276
10.7.1 Debye material 277
10.7.2 Drude material 282
10.8 Summary 283

11 Schrödinger equations for waveguides and quantum dots 284
11.1 Generalized DG (GDG) methods for Schrödinger equations 284
11.1.1 One-dimensional Schrödinger equations 284
11.1.2 Two-dimensional Schrödinger equations 287
11.2 GDG beam propagation methods (BPMs) for optical waveguides 289
11.2.1 Guided modes in optical waveguides 289
11.2.2 Discontinuities in envelopes of guided modes 294
11.2.3 GDG-BPM for electric fields 296
11.2.4 GDG-BPM for magnetic fields 299
11.2.5 Propagation of HE_{11} modes 301
11.3 Volume integral equations for quantum dots 302
11.3.1 One-particle Schrödinger equation for electrons 302
11.3.2 VIE for electrons in quantum dots 304
11.3.3 Derivation of the VIE for quantum dots embedded in layered media 306
11.4 Summary 309

Part III Electron transport 311

12 Quantum electron transport in semiconductors 313
12.1 Ensemble theory for quantum systems 313
12.1.1 Thermal equilibrium of a quantum system 313
12.1.2 Microcanonical ensembles 315
12.1.3 Canonical ensembles 316
12.1.4 Grand canonical ensembles 319
12.1.5 Bose–Einstein and Fermi–Dirac distributions 320
12.2 Density operator \(\hat{\rho} \) for quantum systems 324
12.2.1 One-particle density matrix \(\rho(x, x') \) 328
12.3 Wigner transport equations and Wigner–Moyal expansions 329
12.4 Quantum wave transmission and Landauer current formula 335
12.4.1 Transmission coefficient \(T(E) \) 335
12.4.2 Current formula through barriers via \(T(E) \) 337
12.5 Non-equilibrium Green’s function (NEGF) and transport current 341
12.5.1 Quantum devices with one contact 342
12.5.2 Quantum devices with two contacts 346
12.5.3 Green’s function and transport current formula 348
12.6 Summary 348
13 Non-equilibrium Green’s function (NEGF) methods for transport 349
13.1 NEGFs for 1-D devices 349
 13.1.1 1-D device boundary conditions for Green’s functions 349
 13.1.2 Finite difference methods for 1-D device NEGFs 351
 13.1.3 Finite element methods for 1-D device NEGFs 353
13.2 NEGFs for 2-D devices 354
 13.2.1 2-D device boundary conditions for Green’s functions 354
 13.2.2 Finite difference methods for 2-D device NEGFs 357
 13.2.3 Finite element methods for 2-D device NEGFs 359
13.3 NEGF simulation of a 29 nm double gate MOSFET 361
13.4 Derivation of Green’s function in 2-D strip-shaped contacts 363
13.5 Summary 364

14 Numerical methods for Wigner quantum transport 365
14.1 Wigner equations for quantum transport 365
 14.1.1 Truncation of phase spaces and charge conservation 365
 14.1.2 Frensley inflow boundary conditions 367
14.2 Adaptive spectral element method (SEM) 367
 14.2.1 Cell averages in k-space 368
 14.2.2 Chebyshev collocation methods in x-space 372
 14.2.3 Time discretization 372
 14.2.4 Adaptive meshes for Wigner distributions 374
14.3 Upwinding finite difference scheme 375
 14.3.1 Selections of $L_{coh}, N_{coh}, L_k,$ and N_k 375
 14.3.2 Self-consistent algorithm through the Poisson equation 376
 14.3.3 Currents in RTD by NEGF and Wigner equations 377
14.4 Calculation of oscillatory integrals $O_n(z)$ 378
14.5 Summary 379

15 Hydrodynamic electron transport and finite difference methods 380
15.1 Semi-classical and hydrodynamic models 380
 15.1.1 Semi-classical Boltzmann equations 380
 15.1.2 Hydrodynamic equations 381
15.2 High-resolution finite difference methods of Godunov type 388
15.3 Weighted essentially non-oscillatory (WENO) finite difference methods 392
15.4 Central differencing schemes with staggered grids 396
15.5 Summary 400

16 Transport models in plasma media and numerical methods 402
16.1 Kinetic and macroscopic magneto-hydrodynamic (MHD) theories 402
 16.1.1 Vlasov–Fokker–Planck equations 402
 16.1.2 MHD equations for plasma as a conducting fluid 404
16.2 Vlasov–Fokker–Planck (VFP) schemes 410
16.3 Particle-in-cell (PIC) schemes 413
16.4 $\nabla \cdot \mathbf{B} = 0$ constrained transport methods for MHD equations 414
16.5 Summary 418

References 419
Index 441
Foreword

This is an impressive book by Wei Cai. It attempts to cover a wide range of topics in electromagnetics and electronic transport. In electromagnetics, it starts with low-frequency solutions of Poisson–Boltzmann equations that find wide applications in electrochemistry, in the interaction between electromagnetic fields and biological cells, as well as in the drift-diffusion model for electronic transport. In addition to low-frequency problems, the book also addresses wave physics problems of electromagnetic scattering, and the Schrödinger equation. It deals with dyadic Green’s function of layered media and relevant numerical methods such as surface integral equations, and finite element, finite difference, and discontinuous Galerkin methods. It also addresses interesting problems involving surface plasmons and periodic structures, as well as wave physics in the quantum regime.

In terms of quantum transport, the book discusses the non-equilibrium Green’s function method, which is a method currently in vogue. The book also touches upon hydrodynamic electron transport and the germane numerical methods.

This is an excellent book for those who want to study and understand the relationship between mathematical methods and the many different physical problems they can model and solve.

Weng Cho Chew, First Y. T. Lo Endowed Chair Professor, UIUC
Preface

Electromagnetic (EM) processes play an important role in many scientific and engineering applications such as the electrostatic forces in biomolecular solvation, radar wave scattering, the interaction of light with electrons in metallic materials, and current flows in nano-electronics, among many others. These are the kinds of electromagnetic phenomena, from atomistic to continuum scales, discussed in this book.

While the focus of the book is on a wide selection of various numerical methods for modeling electromagnetic phenomena, as listed under the entry “numerical methods” in the book index, attention is also given to the underlying physics of the problems under study. As computational research has become strongly influenced by the interaction from many different areas such as biology, physics, chemistry, and engineering, etc., a multi-faceted and balanced approach addressing the interconnection among mathematical algorithms and physical principles and applications is needed to prepare graduate students in applied mathematics, sciences, and engineering, to whom this book is aimed, for innovative advanced computational research.

This book arises from courses and lectures the author gave in various universities: the UNC Charlotte and the UC Santa Barbara in the USA, and Peking University, Fudan University, and Shanghai Jiao Tong University in China, to graduate students in applied mathematics and engineering. While attempts are made to include the most important numerical methods, the materials presented are undoubtedly affected by the author’s own research experience and knowledge. The principle of selecting the materials is guided by Confucius’s teaching above – “For a man to succeed in his endeavors, he must first sharpen his tools.” So, emphasis is on the practical and algorithmic aspects of methods ready for applications, instead of detailed and rigorous mathematical elucidation.

The book is divided into three major parts according to three broadly defined though interconnected areas: electrostatics in biomolecules, EM scattering and guiding in microwave and optical systems, and electron transport in semiconductor and plasma media. The first two areas are based on atomistic and continuum
EM theory, while the last one is based on Schrödinger quantum and also Maxwell EM theories. Part I starts with a chapter on the statistical molecular theory of dielectric constants for material polarization in response to an electric field, an important quantity for molecular dynamics simulation of biomolecules and understanding optical properties of materials addressed in the book. Then, the Poisson–Boltzmann (PB) theory for solvation is given in Chapter 2, together with analytical approximation methods such as the generalized Born method for solvation energy and image methods for reaction fields in simple geometries. Chapter 3 contains various numerical methods for solving the linearized PB equations including the boundary integral equation methods, the finite element methods, and the immersed interface methods. Chapter 4 presents three methods to handle the long-range electrostatic interactions – a key computational task in molecular dynamics algorithms: the particle-mesh Ewald, the fast multipole method, and a reaction field based hybrid method.

Part II contains a large collection of numerical techniques for solving the continuum Maxwell equations for scattering and propagation in time- and frequency-domains. This part starts with Chapter 5 on Maxwell equations with physical and artificial boundary conditions; the former includes dielectric interface conditions and Leontovich impedance boundary conditions for conductors with a perfect electric conductor (PEC) as a limiting case, and the latter includes local absorbing boundary conditions and uniaxial perfectly matched layer (PML) boundary conditions. Chapter 6 discusses the dyadic Green’s functions in layered media for the Maxwell equations in the frequency-domain and an algorithm for fast computation. High-order surface integral methods for electromagnetic scattering form the subject of Chapter 7, which includes the Galerkin method using mixed vector–scalar potentials and the Nyström collocation method for both the hyper-singular integral equations and the mixed vector–scalar potential integral equations, and combined integral equations for the removal of resonance in cavities. Finally, the high-order surface current basis for the Galerkin integral equation methods is discussed. Chapter 8 on edge elements begins with Nédélec’s original construction of the $H(\text{curl})$ conforming basis, and then presents hierarchical high-order elements in 2-D rectangles and 3-D cubes and simplexes in both 2-D and 3-D spaces. Next, time-domain methods, including the discontinuous Galerkin (DG) methods with a high-order hierarchical basis and the finite difference Yee scheme, are given in Chapter 9. Numerical methods for periodic structures and surface plasmons in metallic systems are covered in Chapter 10, including plane-wave-based methods and transmission spectra calculations for photonics band structures, finite element methods, and volume integral equation (VIE) methods for the Maxwell equations. For the surface plasmons, the DG methods for dispersive media using auxiliary differential equations (ADEs) are given for Debye and Drude media. The final chapter (Chapter 11) of Part II contains numerical methods for Schrödinger equations for dielectric optical waveguides and quantum dots: a generalized DG method for the paraxial approximation in optical waveguides, and a VIE method.
for Schrödinger equations in quantum dots embedded in layered semiconductor materials.

Part III starts with Chapter 12 on the electron quantum transport models in semiconductors, which also includes the Fermi–Dirac distribution for electron gas within the Gibbs ensemble theory, density operators, and kinetic descriptions for quantum systems. The quantum transport topics discussed in this chapter include the Wigner transport model in phase space for electrons, the Landauer transmission formula for quantum transport, and the non-equilibrium Green’s function (NEGF) method. Then, the non-equilibrium Green’s function method in Chapter 13 contains the treatment of quantum boundary conditions and finite difference and finite element methods for the NEGF; the latter allows the calculation of the transmission coefficients in the Landauer current formula for general nano-devices. Chapter 14 includes numerical methods for the quantum kinetic Wigner equations with the upwinding finite difference and an adaptive cell average spectral element method. Chapter 15 first presents the semi-classical Boltzmann and continuum hydrodynamic models for multi-species transport, including electron transport, and then follows with the numerical methods for solving the hydrodynamic equations by Godunov methods and WENO and central differencing methods. In the final chapter of the book, Chapter 16, we first present the kinetic Vlasov–Fokker–Planck (VFP) model and the continuum magnetohydrodynamic (MHD) transport model for electrons in plasma media. Then, several numerical methods are discussed including the VFP scheme in phase space, and the particle-in-cell and constrained transport methods for the MHD model, where the divergence-free condition for the magnetic field is specifically enforced.

In making this book a reality, I credit my education and ways of doing research to my teachers Prof. Zhongci Shi at the University of Science and Technology of China (USTC), who exposed me to the power of non-conforming finite element methods and reminded me that computational research must not be devoid of real science and engineering relevance, and Prof. David Gottlieb (my doctoral thesis advisor) at Brown University, who taught me that simplicity is the beauty in sciences. Also, my scientific research has benefited greatly from encouragements and interactions from the late Prof. Steven Orszag over many years. I have learnt much from interactions with my colleague physicist Prof. Raphael Tsu (a co-inventor of the resonant tunneling diode and a pioneer in quantum superlattices), whose sharp physics insight has always been an inspiration and pleasure during many of our discussions. My former colleague Prof. Boris Rozovsky has provided much encouragement, spurring me to undertake the challenge of writing this book, which started in 2004 during one of my many research collaboration visits with Prof. Pingwen Zhang at Peking University through the Beijing International Center for Mathematical Research. This book would not be possible without the joint research work undertaken in the past few decades with my colleagues Pingwen Zhang and Shaozhong Deng, and my former students and postdoctoral researchers Tiejun Yu, Yijun Yu, Yuchun Lin, Tiao Lu, Xia Ji,
Haiyan Jiang, Min hyung Cho, Kai Fan, Sihong Shao, Zhenli Xu, and Jianguo Xin. Special thanks are given for the many useful discussions with my friends and other colleagues, which have contributed to my understanding of various topics in the book, including Achi Brandt, Alexandre Chorin, Weinan E, George Karniadakis, Chiwang Shu, Leslie Greengard, Jan Hesthaven, Tom Hagstrom, Eitan Tadmor, Shiyi Chen, Roger Temam, Weng Cho Chew, Jian-ming Jin, Dian Zhou, Xuan Zeng, Jinchao Xu, Jianguo Liu, Shi Jin, Houde Han, Jing Shi, Ann Gelb, Gang Bao, Jingfang Huang, Bob Eisenberg, Chun Liu, Xianjun Xing, Benzhuo Lu, Tao Tang, Jie Shen, Huazhong Tang, Tsinghua Her, Andrij Baumketner, Donald Jacobs, Guowei Wei, Vasily Astratov, and Greg Gbur. I would like to thank Dr. Shaozhong Deng for his careful reading of the manuscript; many improvements in the presentation of the book have resulted from his suggestions. The author is also grateful for the professional help and great effort of Ms. Irene Pizzie during the copy-editing of the book.

Finally, special acknowledgements are given to the continual support of the Advanced Scientific Computing Research, Office of Science at the Department of Energy (under program managers Sandy Landsberg and Karen Pao) and the Army Research Office (under program manager Joseph Myers) over the years, and to NSF and NIH for allowing me to undertake the research that is behind many results contained in this book.
References

References

References

Index

absorbing boundary conditions
 Bayliss–Turkel for Maxwell equations, in auxiliary variables, 136
 Bayliss–Turkel for scalar wave, in auxiliary variables, 134
 Engquist–Majda one-way wave, 132
 Higdon boundary condition, 134
 uniaxial PML (UPML), 138
auxiliary differential equation
 Debye materials, 277
 Drude materials, 282
band gap calculations
 finite element, frequency domain, 257
 finite element, time domain, 261
 plane wave methods, 252
 transmission spectra, 253
 band gap, photonic structures, 250
 beam propagation, discontinuous Galerkin method, 296
 Bloch theory for periodic structure, 248
 Bloch wave expansions, 250
 Boltzmann equations, 381
 moment equations, 383
 bosons, 322
boundary conditions
 dielectric interfaces, 125
 Leontovich impedance, 127
boundary element method (BEM)
 Nyström hyper-singular method for Maxwell equations, 186
 Nyström weak singular integral method for Maxwell equations, 190
 Poisson–Boltzmann equation, 71
 Bragg reflection coefficients, 253
 Bragg transmission coefficients, 254
 Bravais lattice vectors, 89
Cauchy principal integrals, 61
 direct computation, 75
cavity field, 14
cavity resonance, 182
central difference scheme, 396
charges, bound, 6
 charging, 35
charging energy, 35
charging process, 35
Clausius–Mossotti formula, 9
collision operators
 Boltzmann, 382
 Fokker–Planck, 404
combined integral equations and resonance, 182
constrained transport methods for MHD equations, 414
Debye–Hückel inverse length, 30
Debye–Hückel theory, 29
density matrix, 328
device with contacts, 341
density of states, electron in contacts, 338
density operator, 326
dielectric fluctuation formula, 21
total dipole moment, 16
dielectric formula
 Clausius–Mossotti, 9
 Onsager formula for dipolar liquid, 11
diode, $n^{+} – n^{-}$, 399
dipole, 3
directing field, 11
discontinuous Galerkin methods for Maxwell equations, 230
displacement flux \mathbf{D}, 7
drift-diffusion model, 381
Duffy mapping, 191
dyadic Green’s functions
 homogeneous media, 149
 layered media, 148
 longitudinal components, 153
 transverse components, 152
 vector potential, 158
delectric field integral equation (EFIE), 180
electron continuity equation, 303
electron correlation function, 346
ensemble theory
 canonical ensemble, 316
 grand canonical ensemble, 319
 microcanonical ensemble, 315
Ewald summation for charges and dipoles, 89
Index

extinction principle, 174
extraordinary optical transmission (EOT), 273
fast multipole method (FMM), 98
conversion operators for 3-D electrostatics, 105
for Helmholtz equations, wideband, 107
interaction list, 102
local expansions, 100
local to local translations, 103
multipole expansions, 98
multipole to local translations, 101
multipole to multipole translations, 104
pseudo-code, 104
recursion for local expansions (downward), 102
recursion for multipole expansions (upward), 104
fermions, 322
generalized Born approximations, 36
Born radius, FFT-based calculations, 39
Born radius, integral expression, 38
Godunov scheme, 389
plasma MHD models, 416
semiconductor hydrodynamic models, 389
guided modes of optical waveguides, 289
Hadamard finite part integrals, 61
direct computation, 75
Hankel transform, 151
fast calculation with window-based filtering, 160
Helmholtz double layer, 31
Helmholtz vector decomposition, 123
Hertz dipoles, 147
horizontally directed, 154
vertically directed, 154
hierarchical basis for DG methods, 234
2-D and 3-D quadrilateral elements, 234
2-D triangular elements, 235
3-D tetrahedral elements, 235
Huygens’ principle, 174
hybrid model for electrostatics, 111
dielectric constant calculated, 115
molecular dynamics, 115
reaction field, 111
hydrodynamic equations, 387
central difference scheme, 396
WENO (weighted essentially non-oscillatory) method, 392
hyper-singular integrals, 62
direct computation, 75
regularization method, 72
image charges, 45
conducting cylinder, 47
conducting half-space, 45
conducting sphere, 45
dielectric cylinder, 46
dielectric half-space, 46
dielectric sphere in ionic solvent, 53
dielectric sphere, Friedman, 49
dielectric sphere, multiple discrete images, 53
dielectric sphere, Neumann’s line images, 50
layered ionic solvent, 58
layered non-ionic solvent, 57
impedance boundary condition, Leontovich, 127
integral equations
combined integral equations and resonance, 182
electric field integral equation, 180
Galerkin method, 191
magnetic field integral equation, 180
Nyström collocation method, 186
singular and hyper-singular integral equations, 175
Stratton–Chu formula, 180
surface IE for conductors, 181
surface IE for dielectrics, 182
surface IE for PEC, 181
volume integral equations for Maxwell equations, 270
volume integral equations for quantum dots, 304
ionic strength, 30
Kirkwood expansion, 47
Landauer formula, 340
Laplace–Beltrami operator, 137
longitudinal field components, 153
Lorentz local field, 10
magnetic field integral equation (MFIE), 180
magnetization, 120
magneto-hydrodynamics (MHD), 404
eigen-systems, 416
Maxwell equations, 121
Ampère–Maxwell law, 121
discontinuous Galerkin methods, 230
Faraday’s law, 119
finite difference Yee scheme, 242
Galerkin integral equation methods, 191
Gauss’s law, 121
integral form, 242
magnetization, 120
Nyström method for hyper-singular integral equations, 186
Nyström method for weak singular integral equations, 190
potentials, electric and magnetic, 123
Rankine–Hugoniot conditions, 232
singular and hyper-singular integral
equations, 175

finite-harmonic, 122

uniaxial PML, 142

vector wave equations, 122

volume integral equations, 270

weak form, 228

MOSFET, double gate, 362

Nédélec edge elements, 209

2-D hierarchical basis in a quadrilateral, 218

2-D hierarchical basis in a triangle, 219

2-D reference square, 209

2-D reference triangle, 211

3-D hierarchical basis in a 3-D cube, 222

3-D hierarchical basis in a 3-D tetrahedron, 223

3-D reference cube, 212

3-D reference tetrahedron, 212

Piola transform, 208

non-equilibrium Green’s function (NEGF), 349

1-D device, 349

1-D device, boundary conditions, 351

1-D device, finite difference method, 351

1-D device, finite element method, 353

1-D device, self-energy, 353

2-D device, 354

2-D device, boundary conditions, 356

2-D device, finite difference method, 357

2-D device, finite element method, 359

2-D device, self-energy, 361

transmission coefficients, 348

numerical DG fluxes for Maxwell equations, 233

numerical methods

adaptive spectral element method, 367
central difference scheme, 396
collocation boundary element methods, 71
constrained transport methods for MHD equations, 414
discontinuous Galerkin methods for dispersive media, 274
discontinuous Galerkin methods for Maxwell equations, 230
discontinuous Galerkin methods for Schrödinger equations, 284
Ewald summation, 89
fast multipole method (FMM), 98
finite element methods for vector Helmholtz eigenvalues, 257
Galerkin integral equation methods for Maxwell equations, 191
generalized DG beam propagation method, 296
Godunov scheme, 389

image charge method, 44

Nédélec edge elements for Maxwell equations, 209

non-equilibrium Green’s function (NEGF), 349

Nyström hyper-singular integral method for Maxwell equations, 186

Nyström weak singular integral method for Maxwell equations, 190

particle-in-cell (PIC) schemes for plasmas, 413

particle-mesh Ewald (PME) method, 96

plane wave methods for band gaps, 252

Poisson–Boltzmann equation
collocation boundary element methods, 71

finite element methods, 82

immersed interface methods (IIM), 85

upwinding finite difference method, 375

Vlasov–Fokker–Planck (VFP) schemes, 410

volume integral equations for Maxwell equations, 270

volume integral equations for quantum dots, 304

WENO (weighted essentially non-oscillatory) method, 392

Yee scheme for Maxwell equations, 242

Onsager formula for dipolar liquids, 11

particle-in-cell (PIC) schemes, 413

particle-mesh Ewald (PME) method, 96

perfectly matched layer (PML), uniaxial absorbing media, 138

Planck constant h, 302

plasma transport models

MHD single-fluid, 404

particle-in-cell, 413

Vlasov–Fokker–Planck kinetic, 403

Poisson equation, 27

Poisson–Boltzmann equation, 29

energy variational, 36

hyper-singular surface integral equations, 70

linearized, 30

modified with steric size effect, 30

surface integral representations, 65

Poisson–Nernst–Planck (PNP) model, 381

polarization density, 5

polarization field, 7

potentials of electromagnetic fields, 123

Sommerfeld, 158

transverse, 160

quantum dots, volume integral equation method, 304

quantum many particles

bosons, 323
fermions, 324
partition functions, 322
Pauli exclusion principle, 321
Slater determinants, 321
radiation conditions
Silver–Müller, 129
Sommerfeld, 129
Rayleigh–Bloch waves, 263
RCWA (rigorous coupled wave analysis)
transmission spectra, 253
reciprocal lattice vectors G, 90
resonant tunneling diode
I-V curves by Wigner equation and NEGF, 378
resonant tunneling diode (RTD), 377
RWG current basis, 193
hierarchical basis, 193
triangular–quadrilateral patches, 201
triangular–triangular patches, 194
Schrödinger equations
for electrons with an effective mass, 302
paraxial approximation in waveguides, 297
singular integral potentials
double-layer, 61
single-layer, 61
singular sources
charges, 145
currents, 147
Hertz dipoles, 147
solvation, 26
solvation energy
Born, 34
charging process, 35
electrostatic, 35
Still’s generalized Born approximations, 36
Sommerfeld radiation condition and uniqueness, 130
spectral function, 345
statistical distribution
bosons, 324
fermions, 324
Stratton–Chu formula, 180
surface differential operators, 185
surface plasmons
 dispersion relation, 267
 localized modes, 268
 propagating modes, 265
 resonant coupling, 274
thermal equilibrium, 313
time-harmonic Maxwell equations, 122
transmission coefficient, 335
single-barrier, 336
transport models (classical)
 hydrodynamic equations, 387
 semi-classical Boltzmann equations, 381
transport models (quantum)
 non-equilibrium Green’s function, 348
Wigner equations, 332
transverse electric (TE) wave, 205
transverse field components, 152
transverse magnetic (TM) wave, 278
Tsu–Esaki current formula, 339
uniformly polarized sphere, 24
Vlasov–Fokker–Planck (VFP) equations, 404
Vlasov–Fokker–Planck (VFP) schemes, 410
weak form of Maxwell equations, 228
WENO (weighted essentially non-oscillatory) method, 392
Weyl correspondence of quantum operators, 334
WGM (whispering gallery mode), 238
Wigner distribution, 329
Wigner equation
 adaptive spectral element method, 367
 continuity equation, 334
 current density, 334
 derivation, 330
electron density, 334
Frensley inflow boundary condition, 367
mesh selection for finite difference method, 376
truncation in phase space, 365
upwinding finite difference method, 375
Wigner–Moyal expansion, 333
Yee finite difference method for Maxwell equations, 242
Computational Methods
for Electromagnetic Phenomena

Electrostatics in Solvation, Scattering,
and Electron Transport

Wei Cai

"A well-written book which will be of use to a broad range of students and researchers
in applied mathematics, applied physics and engineering."
Leslie Greengard, Courant Institute, New York University

"...a truly unique book that covers a variety of computational methods for several important
physical (electromagnetics) problems in a rigorous manner with a great depth."
Jian-Ming Jin, University of Illinois at Urbana-Champaign

"...the organization of the material and the exposition of physical and algorithmic concepts
is superb and make the book accessible to researchers and students in every discipline."
George Karniadakis, Brown University

A unique and comprehensive graduate text and reference on numerical methods for
electromagnetic phenomena, from atomistic to continuum scales, in biology, optical-to-micro
waves, photonics, nano-electronics, and plasmas.

The state-of-the-art numerical methods described include:
- Statistical fluctuation formulae for dielectric constants
- Particle mesh Ewald, fast multipole method, and image-based reaction field methods for
 long-range interactions
- High-order singular/hyper-singular (Nyström collocation/Galerkin) boundary and volume
 integral methods in layered media for Poisson–Boltzmann electrostatics, electromagnetic
 wave scattering, and electron density waves in quantum dots
- Absorbing and UPML boundary conditions
- High-order hierarchical Nédélec edge elements
- High-order discontinuous Galerkin (DG) and Yee scheme time-domain methods
- Finite element and plane wave frequency-domain methods for periodic structures
- Generalized DG beam propagation methods for optical waveguides
- NEGF (non-equilibrium Green’s function) and Wigner kinetic methods for quantum
 transport
- High-order WENO, Godunov and central schemes for hydrodynamic transport
- Vlasov–Fokker–Planck, PIC, and constrained MHD transport in plasmas

Wei Cai has been a full Professor at the University of North Carolina since 1999. He has also
taught and conducted research at Peking University, Fudan University, Shanghai Jiaotong
University, and the University of California, Santa Barbara. He has published over 90 refereed
journal articles, and was awarded the prestigious Feng Kang prize in scientific computing in
2006.