The Arc Length Formula

The length of a curve with equation \(y = f(x), a \leq x \leq b \) is \(L = \int_a^b \sqrt{1 + (f'(x))^2} \, dx \)

The length of a curve with equation \(x = f(y), a \leq y \leq b \) is \(L = \int_a^b \sqrt{1 + (f'(y))^2} \, dy \)

1. (1 pt) UNCC1242/EssentialCalculus-Stewart-Sec7.4.3.pg

Book Problem 3

Set up an integral to find the length of the curve defined by \(y = 5x^{3/2} + 3 \) from \(x = 1 \) to \(x = 10 \), then evaluate it.

\[L = \int_1^{10} \quad dx = \quad \]

2. (1 pt) UNCC1242/EssentialCalculus-Stewart-Sec7.4.5.pg

Book Problem 5

Consider the curve defined by \(y = \frac{e^x}{8} + \frac{1}{12x^4} \) from \(x = 1 \) to \(x = 3 \).

The length of this curve is \(L = \int_1^3 \sqrt{1 + (f'(x))^2} \, dx \) where \(f'(x) = \frac{\frac{3}{4}x^2 + \frac{1}{3x^2}}{x^2} \).

Simplify and factor to get \(L = \int_1^3 \sqrt{\left(\frac{3}{4}x^2 + \frac{1}{3x^2}\right)^2} \, dx \) where \(g(x) = \frac{3}{4}x^2 + \frac{1}{3x^2} \).

Simplify and integrate to find \(L = \quad \)

3. (1 pt) UNCC1242/EssentialCalculus-Stewart-Sec7.4.6.pg

Book Problem 6

Find the length \(L \) of the arc formed by \(y = \frac{1}{2} \left(-4x^2 + 2 \ln(x)\right) \) from \(x = 3 \) to \(x = 5 \).

Set up: \(L = \int_3^5 \sqrt{1 + (f'(x))^2} \, dx \) where \(f'(x) = \frac{-x + \frac{1}{12x}}{4x} \).

Simplify: \(L = \int_3^5 \sqrt{\left(\frac{1}{4x} + \frac{1}{12x} - \frac{x}{12x^2}\right)^2} \, dx \) where \(g(x) = \frac{-x + \frac{1}{12x}}{4x} + \frac{1}{4x} \).

Integrate: \(L = \quad \)

\[= \int_3^5 \sqrt{\left(\frac{3}{4}x^5 + \frac{1}{3x^5}\right)^2} \, dx = \int_3^5 \left(\frac{3}{4}x^5 + \frac{1}{3x^5}\right) \, dx = \]

\[= \frac{3}{4} x^6 + \frac{1}{3} \left[\frac{1}{12x^4} \right] = \quad \]
4. (1 pt) UNCC1242/EssentialCalculus-Stewart-Sec7.4.7.pg

Book Problem 7

Find the length \(L \) of the curve \(x = \sqrt{y} \left(y - \frac{25}{96} \sqrt[3]{y} \right), \quad 0 \leq y \leq 243. \)

Set up: \[L = \int_{0}^{243} \sqrt{1 + (f'(y))^2} \, dy \quad \text{where} \quad f'(y) = \frac{\frac{5}{6} \sqrt[3]{y} - \frac{5}{2} \frac{1}{y^{1/2}}} {\sqrt{y} - \frac{5}{2y^{1/2}}} \]

Simplify: \(L = \int_{0}^{243} \sqrt{g(y)^2} \, dy \) where \(g(y) = \frac{\frac{5}{6} \sqrt[3]{y} + \frac{5}{2} y^{-1/2}} {\sqrt{y} - \frac{5}{2y^{1/2}}} \)

Integrate: \(L = \left(\frac{243}{2} \right)^{5/6} \frac{1}{2} \left(\frac{243}{2} \right)^{1/2} = \ldots \)

5. (1 pt) UNCC1242/EssentialCalculus-Stewart-Sec7.4.9.pg

Book Problem 9

\(y = \ln(\sec(x)) \quad \text{Find the length} \ L \ \text{of the arc formed by} \ y = \ln(\sec(x)), \quad 0 \leq x \leq \frac{\pi}{3}. \)

\[y' = \frac{\sec(x) \tan(x)} {\sec(x)} = \tan(x) \]

\[L = \int_{0}^{\pi/3} \sqrt{1 + (f'(x))^2} \, dx \quad \text{where} \quad f'(x) = \tan(x) \]

\[L = \int_{0}^{\pi/3} \sqrt{g(x)^2} \, dx \quad \text{where} \quad g(x) = \sec(x) \]

Now use the Table of Integrals at the end of your book to evaluate \(L \).

Formula number 14 and the length \(L \) of the curve = \(\pi \cdot 3.169579 \).

6. (1 pt) UNCC1242/EssentialCalculus-Stewart-Sec7.4.13.pg

Book Problem 13

Find the length \(L \) of the arc formed by \(y = e^{2x}/2, \quad 0 \leq x \leq 3. \)

\[L = \int_{0}^{3} \sqrt{1 + \left(\frac{dy}{dx} \right)^2} \, dx \]

Evaluate \(L \) using the Table of Integrals at the end of your book.

First, perform the substitution \(u = e^{2x}, \) (Hint: \(u^2 = e^{4x} \))

to get \(L = \int_{u_0}^{u_3} \sqrt{1 + u^2} \, du \).

Then use formula number 23 to evaluate \(L = \ldots \).
7. (1 pt) UNCC1242/EssentialCalculus-Stewart-Sec7.4.19.pg

Book Problem 19

Use Simpson's Rule with \(n = 4 \) to estimate the arc length of the curve \(y = 2e^{-2x}, \ 0 \leq x \leq 2 \).

\[
L = \int_0^2 \sqrt{1 + y'^2} \, dx = \int_0^2 \sqrt{1 + (4e^{-2x})^2} \, dx
\]

The estimation \(S_4 = 3.04795 \)

\[
\Delta x = \frac{2 - 0}{4} = 0.5
\]

8. (1 pt) UNCC1242/EssentialCalculus-Stewart-Sec7.4.29.pg

Book Problem 29

A hawk flying at 14 m/s at an altitude of 180 m accidentally drops its prey. The parabolic trajectory of the falling prey is described by the equation \(y = 180 - x^2/42 \) until it hits the ground, where \(y \) is the height above the ground and \(x \) is the horizontal distance traveled in meters.

Let \(D \) be the distance traveled by the prey from the time it is dropped until the time it hits the ground.

\[
D = \int_a^b \sqrt{1 + y'^2} \, dx \quad \text{, where } a = 0 \quad \text{and } b = \frac{\sqrt{4686}}{2}
\]

Therefore the distance traveled by the prey is equal to _______.

\[
\text{Math}\quad = 207.521821
\]