AN EXACT SOLUTION TO A PROBLEM OF AXISYMMETRIC TORSION OF AN ELASTIC SPACE WITH A SPHERICAL CRACK

By

YURI A. GODIN

Department of Mathematics, Technion - I.I.T., Haifa, Israel

Abstract. It is a well-known fact that the three-dimensional axisymmetric dilatation problem for an elastic space containing a spherical crack has an explicit solution, found and analyzed in [1]–[3]. The corresponding torsion problem, however, also of interest, has not apparently been investigated. To remedy this shortage we present here an exact solution to this problem, which incidentally reveals a remarkable effect concerning the stress intensity.

Denoting by \((R, \theta, \phi)\) a spherical coordinate system, let a crack be situated at \(R = a, 0 \leq \theta \leq \theta_0, 0 \leq \phi < 2\pi\), in an elastic medium twisted at infinity. Then the displacement vector is \(\{0, 0, v_{\phi} = v(R, \theta)\}\), and the only nonvanishing stress components are

\[
\tau_{R\phi} = GR \frac{\partial}{\partial R} \left(\frac{v}{R} \right), \quad \tau_{\theta\phi} = \frac{G}{R} \left(\frac{\partial v}{\partial \theta} - v \cot \theta \right),
\]

where \(G\) is the shear modulus. We look for a solution in the form

\[
v(R, \theta) = u^*(R, \theta) + u(R, \theta),
\]

where \(u^* = \alpha R^2 \sin \theta \cos \theta\) is the displacement in the crack-free medium, and \(\alpha\) is the twist angle per unit length. Setting

\[
u = \begin{cases} u_i(R, \theta), & 0 \leq R < a, \\ u_e(R, \theta), & R > a \end{cases}
\]

we arrive at the following mixed boundary-value problem:

\[
\nabla^2 u - \frac{u}{R^2 \sin^2 \theta} = 0, \quad R \neq a;
\]

\[
u_e \to 0 \quad \text{as } R \to \infty;
\]

\[
\tau_{R\phi}^{(i)}(a, \theta) = \tau_{R\phi}^{(e)}(a, \theta) = -\alpha a G \sin \theta \cos \theta, \quad 0 \leq \theta < \theta_0;
\]

\[
\tau_{R\phi}^{(i)}(a, \theta) = \tau_{R\phi}^{(e)}(a, \theta), \quad \theta_0 < \theta \leq \pi;
\]

\[
u_i(a, \theta) = \nu_e(a, \theta), \quad \theta_0 < \theta \leq \pi.
\]
A solution that satisfies Eq. (4) and is compatible with the condition (5) at infinity reads
\[
 u_i = \alpha a^2 \sum_{n=1}^{\infty} A_n \left(\frac{R}{a} \right)^n P_n^1(\cos \theta), \quad 0 \leq R < a; \quad (9)
\]
\[
 u_e = \alpha a^2 \sum_{n=1}^{\infty} B_n \left(\frac{a}{R} \right)^{n+1} P_n^1(\cos \theta), \quad R > a. \quad (10)
\]

Here \(P_n^1(\cos \theta) \) is the associated Legendre function [4] and \(A_n, B_n \) are the unknown dimensionless coefficients. The stress continuity conditions (6)–(7) relate \(B_n \) to \(A_n \) by
\[
 B_n = -\frac{n-1}{n+2} A_n, \quad n = 1, 2, \ldots, \quad (11)
\]
and then (6) and (8) yield the following dual series associated with Legendre functions:
\[
 \sum_{n=1}^{\infty} (n-1) A_n P_n^1(\cos \theta) = -\sin \theta \cos \theta, \quad 0 \leq \theta < \theta_0; \quad (12)
\]
\[
 \sum_{n=1}^{\infty} \frac{2n+1}{n+2} A_n P_n^1(\cos \theta) = 0, \quad \theta_0 \leq \theta < \pi. \quad (13)
\]

This system of dual series differs from the one investigated in [5] and therefore, according to [3], we represent the solution of (12)–(13) in the form
\[
 A_n = \frac{n+2}{2n(n+1)} \int_{0}^{\theta_0} \psi(t) \cos \left(n + \frac{1}{2} \right) t \, dt \quad (14)
\]
with \(\psi(t) \in C_{[0, \theta_0]} \).

Substituting (14) back in (12)–(13) and resorting to Fourier expansion in Legendre polynomials [4] we find that (13) holds if \(\psi(t) \) satisfies the condition
\[
 \int_{0}^{\theta_0} \psi(t) \cos \frac{t}{2} \, dt = 0. \quad (15)
\]

After integration of (12) with respect to \(\theta \), and taking into account Mehler's integral representation [4] with the necessary discontinuous sum for Legendre polynomials [4], we obtain the Abel integral equation
\[
 \int_{0}^{\theta} \left[\psi(x) - \frac{4}{\pi} \int_{0}^{\theta_0} K(x, t) \psi(t) \right] \frac{dt \, dx}{\sqrt{2} \cos x - 2 \cos \theta} = C - \sin^2 \theta, \quad 0 \leq \theta < \theta_0, \quad (16)
\]
where
\[
 K(x, t) = \sum_{n=1}^{\infty} \frac{\cos(n + \frac{1}{2})x \cos(n + \frac{1}{2})t}{n(n+1)}
\]
\[
 = 2 \cos \frac{t}{2} \left[(\pi - x) \sin \frac{x}{2} - \cos \frac{x}{2} \right] - 2t \sin \frac{t}{2} \cos \frac{x}{2} \quad (17)
\]
and \(C \) is an unknown constant.
Solution of Eq. (16) leads to a Fredholm integral equation of the second kind:

$$
\psi(x) - \frac{4}{\pi} \int_0^{\theta_0} K(x, t) \psi(t) \, dt = \frac{4}{3 \pi} \cos \frac{5x}{2} + D \cos \frac{x}{2}, \quad 0 \leq x < \theta,
$$

(18)

where \(D \) is another unknown constant. The kernel (17) of this equation is a degenerate one and thus permits an explicit solution to Eq. (18) that satisfies condition (15) and specifies the value of the unknown constant \(D \), namely

$$
\psi(x) = \frac{4}{3 \pi} \left[\cos \frac{5x}{2} - \frac{2 \sin 3\theta_0 + 3 \sin 2\theta_0}{6(\theta_0 + \sin \theta_0)} \cos \frac{x}{2} \right].
$$

(19)

The shear stress \(\tau_{R\phi} \) on the surface \(R = a \) follows as

$$
\tau_{R\phi}(a, \theta) = \alpha a G \left[\sin \theta \cos \theta - \frac{1}{2} \sin \theta \int_0^{\theta_0} \frac{\psi(t) \, dt}{(2 \cos t - 2 \cos \theta)^{3/2}} \right. \\
\left. + \frac{1}{\sin \theta} \int_0^{\theta_0} \psi(t)(2 \cos t - 2 \cos \theta)^{1/2} \, dt \right], \quad \theta_0 < \theta \leq \pi,
$$

(20)

and the integrals here may be calculated explicitly with the aid of (19).

This formula results in an expression for the stress intensity factor \(K_{III} \) in the form

$$
K_{III} = \lim_{\theta \to \theta_0} \tau_{R\phi} \sqrt{2\pi a(\theta - \theta_0)}
$$

$$
= \frac{2\alpha a^{3/2} G}{3\sqrt{\pi} \sin^{1/2} \theta_0} \left[\frac{2 \sin 3\theta_0 + 3 \sin 2\theta_0}{6(\theta_0 + \sin \theta_0)} \cos \frac{\theta_0}{2} - \cos \frac{5\theta_0}{2} \right].
$$

(21)

Figure 1 (see p. 682) illustrates the dependence of \(K_{III} = K_{III}(\alpha a^{3/2} G)^{-1} \) on the crack angle \(\theta_0 \), which appears to be nonmonotonic. At \(\theta_0 \approx 106^\circ \), \(K_{III} \) vanishes completely and then changes its sign. Its maximum and minimum values are at \(\theta_0 \approx 61^\circ \) and \(152^\circ \), respectively; the highest value of \(|K_{III}| \) is at \(\theta_0 = 152^\circ \).

Finally, it is worthwhile to consider the limiting case \(\theta_0 \to 0, a \to \infty \) such that \(a\theta_0 \to b \) (transition to a penny-shaped crack). In that case, we find from (21)

$$
K_{III} = \frac{4}{3\sqrt{\pi}} \alpha b^{3/2} G,
$$

(22)

in agreement with the known result from (6).
Fig. 1. Dependence of the normalized stress intensity factor \bar{K}_{III} on the crack angle.

Acknowledgments. The author would like to thank Professors D. Durban and J. Golecki for their support of the study, and Professor A. S. Silbergleit for fruitful discussion.

REFERENCES

CORRIGENDA: An exact solution to a problem of axisymmetric torsion of an elastic space with a spherical crack

By

YURI A. GODIN

The sum (17) in the paper was calculated incorrectly. Its value should be

\[
K(x, t) = \sum_{n=1}^{\infty} \frac{\cos \left(n + \frac{1}{2}\right) x \cos \left(n + \frac{1}{2}\right) t}{n(n+1)} = \cos \frac{x}{2} \cos \frac{t}{2} + x \sin \frac{x}{2} \cos \frac{t}{2} + t \sin \frac{t}{2} \cos \frac{x}{2}
\]

\[
- \begin{cases}
\pi \sin \frac{x}{2} \cos \frac{t}{2}, & 0 \leq t \leq x \leq \theta_0, \\
\pi \sin \frac{t}{2} \cos \frac{x}{2}, & 0 \leq x \leq t \leq \theta_0.
\end{cases}
\]

Consequently, the function \(\psi(x) \) becomes

\[
\psi(x) = \frac{2}{\pi} \cos \frac{5x}{2} - \frac{2}{3\pi} \left(4 \cos \theta_0 - 1\right) \cos \frac{3x}{2},
\]

and the stress intensity factor (21) reads

\[
K_{\text{III}} = \frac{\alpha a^{3/2} G}{\sqrt{\pi} \sin \theta_0} \left(\frac{4 \cos \theta_0 - 1}{3} \cos \frac{3\theta_0}{2} - \cos \frac{5\theta_0}{2}\right).
\]

The dependence of \(\tilde{K}_{\text{III}} = K_{\text{III}}(\alpha a^{3/2} G)^{-1} \) on the crack angle \(\theta_0 \) is given below. Its maximum value is attained at the angle \(2 \arccos \sqrt{10} \approx 75.5^\circ \).

![Graph showing the dependence of \(\tilde{K}_{\text{III}} \) on \(\theta_0 \).]

Fig.1. Dependence of the normalized stress intensity factor \(\tilde{K}_{\text{III}} \) on the crack angle \(\theta_0 \).