Exponential Functions
Definition of the Exponential Function

The exponential function f with base b is defined by

$$f(x) = b^x \quad \text{or} \quad y = b^x$$

Where b is a positive constant other than 1 and x is any real number.

Here are some examples of exponential functions.

- $f(x) = 2^x$ Base is 2.
- $g(x) = 10^x$ Base is 10.
- $h(x) = 3^{x+1}$ Base is 3.
The exponential function \(f(x) = 13.49(0.967)^x - 1 \) describes the number of O-rings expected to fail, \(f(x) \), when the temperature is \(x \)°F. On the morning the Challenger was launched, the temperature was 31°F, colder than any previous experience.

Find the number of O-rings expected to fail at this temperature.

Solution
Because the temperature was 31°F, substitute 31 for \(x \) and evaluate the function at 31.

\[
\begin{align*}
 f(x) &= 13.49(0.967)^x - 1 & \text{This is the given function.} \\
 f(31) &= 13.49(0.967)^{31} - 1 & \text{Substitute 31 for } x.
\end{align*}
\]

Press \(.967^\text{31} \) on a graphing calculator to get \(.353362693426 \). Multiply this by 13.49 and subtract 1 to obtain

\[
f(31) = 13.49(0.967)^{31} - 1 = 3.77
\]
Characteristics of Exponential Functions

- The domain of \(f(x) = b^x \) consists of all real numbers. The range of \(f(x) = b^x \) consists of all positive real numbers.
- The graphs of all exponential functions pass through the point \((0, 1)\) because \(f(0) = b^0 = 1 \).
- If \(b > 1 \), \(f(x) = b^x \) has a graph that goes up to the right and is an increasing function.
- If \(0 < b < 1 \), \(f(x) = b^x \) has a graph that goes down to the right and is a decreasing function.
- \(f(x) = b^x \) is a one-to-one function and has an inverse that is a function.
- The graph of \(f(x) = b^x \) approaches but does not cross the \(x \)-axis. The \(x \)-axis is a horizontal asymptote.
Transformations Involving Exponential Functions

<table>
<thead>
<tr>
<th>Transformation</th>
<th>Equation</th>
<th>Description</th>
</tr>
</thead>
</table>
| Horizontal translation | \(g(x) = b^{x+c} \) | • Shifts the graph of \(f(x) = b^x \) to the left \(c \) units if \(c > 0 \).
 • Shifts the graph of \(f(x) = b^x \) to the right \(c \) units if \(c < 0 \). |
| Vertical stretching or shrinking| \(g(x) = c \cdot b^x \) | Multiplying \(y \)-coordinates of \(f(x) = b^x \) by \(c \),
 • Stretches the graph of \(f(x) = b^x \) if \(c > 1 \).
 • Shrinks the graph of \(f(x) = b^x \) if \(0 < c < 1 \). |
| Reflecting | \(g(x) = -b^x \)
 \(g(x) = b^{-x} \) | • Reflects the graph of \(f(x) = b^x \) about the \(x \)-axis.
 • Reflects the graph of \(f(x) = b^x \) about the \(y \)-axis. |
| Vertical translation | \(g(x) = -b^x + c \) | • Shifts the graph of \(f(x) = b^x \) upward \(c \) units if \(c > 0 \).
 • Shifts the graph of \(f(x) = b^x \) downward \(c \) units if \(c < 0 \). |
Use the graph of \(f(x) = 3^x \) to obtain the graph of \(g(x) = 3^{x+1} \).

Solution Examine the table below. Note that the function \(g(x) = 3^{x+1} \) has the general form \(g(x) = b^{x+c} \), where \(c = 1 \). Because \(c > 0 \), we graph \(g(x) = 3^{x+1} \) by shifting the graph of \(f(x) = 3^x \) one unit to the left. We construct a table showing some of the coordinates for \(f \) and \(g \) to build their graphs.

<table>
<thead>
<tr>
<th>x</th>
<th>(f(x) = 3^x)</th>
<th>(g(x) = 3^{x+1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>(3^{-2} = 1/9)</td>
<td>(3^{-2+1} = 3^{-1} = 1/3)</td>
</tr>
<tr>
<td>-1</td>
<td>(3^{-1} = 1/3)</td>
<td>(3^{-1+1} = 3^0 = 1)</td>
</tr>
<tr>
<td>0</td>
<td>(3^0 = 1)</td>
<td>(3^{0+1} = 3^1 = 3)</td>
</tr>
<tr>
<td>1</td>
<td>(3^1 = 3)</td>
<td>(3^{1+1} = 3^2 = 9)</td>
</tr>
<tr>
<td>2</td>
<td>(3^2 = 9)</td>
<td>(3^{2+1} = 3^3 = 27)</td>
</tr>
</tbody>
</table>
The Natural Base e

An irrational number, symbolized by the letter e, appears as the base in many applied exponential functions. This irrational number is approximately equal to 2.72. More accurately,

The number e is called the natural base. The function $f(x) = e^x$ is called the natural exponential function.
Formulas for Compound Interest

• After t years, the balance, A, in an account with principal P and annual interest rate r (in decimal form) is given by the following formulas:

2. For n compoundings per year:
 \[A = P(1 + \frac{r}{n})^{nt} \]

3. For continuous compounding:
 \[A = Pe^{rt} \]
Example

Use \(A = Pe^{rt} \) to solve the following problem: Find the accumulated value of an investment of $2000 for 8 years at an interest rate of 7% if the money is compounded continuously.

Solution:

\[
A = Pe^{rt} \\
A = 2000e^{(.07)(8)} \\
A = 2000 \ e^{(.56)} \\
A = 2000 \times 1.75 \\
A = $3500
\]
Exponential Functions