PERFECT PREIMAGES AND SMALL DIAGONAL

ALAN DOW AND OLEG PAVLOV

Abstract. Hušek defines a space X to have a small diagonal if each uncountable subset of X^2 disjoint from the diagonal has an uncountable subset whose closure is disjoint from the diagonal. It is known that the existence of a perfect preimage of ω_1 which has a small diagonal is independent of the usual axioms of set-theory. In this note we prove that a perfect preimage of ω_1 which is scattered will not have a small diagonal.

1. Introduction

We refer the reader to Gruenhage's interesting article [Gru02] for more background on spaces with small diagonal (see also [Zho82]). In particular, it is proven by Gruenhage that it is consistent with CH that each countably compact space with a small diagonal is metrizable, hence no countably compact preimage of ω_1 could have a small diagonal. On the other hand, the authors prove in [DP06] that it follows from \diamondsuit^+ (a strengthening of CH) that there is a space with a small diagonal which maps perfectly onto ω_1. In this paper we prove (in ZFC) that there is no scattered space with a small diagonal which maps perfectly onto ω_1.

Hušek [Huš77], of course, originally asked about small diagonals for compact and ω_1-compact spaces. The main open question in this area is whether every compact space with a small diagonal is metrizable. This statement has been shown to be consistent; for example it follows from each of CH and PFA. It is shown in [DP06, Proposition 18] that a counterexample will have to have a continuous image which does not have a small diagonal, hence it is interesting to consider preimages of those spaces that do not

2000 Mathematics Subject Classification. Primary 54D20.
Key words and phrases. countably compact, small diagonal, perfect map.
The first author acknowledges support provided by NSF grant DMS-0103985.
have a small diagonal. We offer the following problem as another interesting question about spaces with a small diagonal that may be easier to resolve in ZFC.

Question 1. If a compact space X maps onto the Alexandroff double of the unit interval or of the compact double arrow space, will X not have a small diagonal?

Using Hušek’s result that a compact non-metrizable space which has a small diagonal must have weight larger than ω_1 and the result by Juhasz and Szentmiklossy [JS92] that it must have countable tightness the authors showed the following.

Proposition 1. [DP06, Corollary 5] If a compact space has a small diagonal, then it is metrizable if each of its separable subspaces is metrizable.

In fact, we should have stated the following strengthening because it uses the same proof.

Proposition 2. If a compact non-metrizable space has a small diagonal, then it has a countable discrete subset whose closure is not metrizable.

Proof. Assume that no countable discrete subset of X is dense. Inductively select points x_α not in the closure of $D_\alpha = \{x_\beta : \beta < \alpha\}$ for $\alpha < \omega_1$. Juhasz and Szentmiklossy [JS92] have shown that X will have countable tightness (because it is compact and has a small diagonal). Therefore $Y = \bigcup_{\alpha < \omega_1} \overline{D_\alpha}$ will be compact and have a small diagonal. If each $\overline{D_\alpha}$ is metrizable, Y will have net-weight, hence weight, equal to \aleph_1. By Hušek’s result Y should be metrizable, which it is clearly not. □

It follows then that if a compact space with a small diagonal maps onto the Alexandroff double then the preimage of the non-isolated points will not be metrizable. In fact, more generally Gruenhage [Gru02, Corollary 2.5] has shown if a non-metrizable compact space with a small diagonal maps onto a metric space, one of the fibers will be non-metrizable.

2. **Perfect preimages of ω_1**

It will be useful to recall the following reformulation of a space having a small diagonal.
Proposition 3. A space X has a small diagonal iff for each uncountable family of pairs of points of X, $\{(x_\alpha, y_\alpha) : \alpha \in \omega_1\}$, there is an uncountable $A \subset \omega_1$ such that each point x of X has a neighborhood U_x satisfying that $|U_x \cap \{x_\alpha, y_\alpha\}| \leq 1$ for all $\alpha \in A$.

The following is a simple generalization.

Lemma 4. If a space X has a small diagonal and $\{F_\alpha : \alpha \in \omega_1\}$ is a family of finite subsets of X, then there is an uncountable $A \subset \omega_1$ such that each point $x \in X$ has a neighborhood U_x satisfying that $U_x \cap F_\alpha$ has at most one element for each $\alpha \in A$.

Proof. Let $n \in \omega$ be chosen so that $A_0 = \{\alpha : |F_\alpha| = n\}$ is uncountable. For each $\alpha \in A_0$, let $\{F_\alpha(i) : i < n\}$ be an enumeration of F_α and let $\{P_j : j < \binom{n}{2}\}$ enumerate all the two element subsets of n. Recursively apply Proposition 3 to select uncountable sets $A_{j+1} \subset A_j$ so that each $x \in X$ has a neighborhood U_x satisfying $|U_x \cap \{F_\alpha(i) : i \in P_j\}| \leq 1$ for each $\alpha \in A_{j+1}$. Clearly if $j = \binom{n}{2}$, then A_j is the desired uncountable subset of A_0. \hfill \Box

It is nearly immediate now that no space with a small diagonal admits a finite-to-one perfect map onto ω_1. We include this proof for the interest of the reader. Recall that a map is perfect if it is a closed map and the preimage of each point is compact.

Corollary 5. If $f : X \to \omega_1$ is a perfect surjective map and for some stationary set $S \subset \omega_1$, $|f^{-1}(\alpha)|$ is finite for each $\alpha \in S$, then X does not have a small diagonal.

Proof. Let S be a stationary set as in the statement of the Corollary. Since a countable union of non-stationary sets is again non-stationary, we may fix an integer n so that $S_0 = \{\alpha \in S : |f^{-1}(\alpha)| = n\}$ is also stationary. For each $\alpha \in S_0$, choose a point x_α such that $f(x_\alpha) = \alpha + 1$ and let $F_\alpha = \{x_\alpha\} \cup f^{-1}(\alpha)$. Apply Lemma 4 to find an uncountable $A_0 \subset S_0$ such that each point $x \in X$ has a neighborhood U_x satisfying $|U_x \cap F_\alpha| \leq 1$ for each $\alpha \in A_0$. Since S_0 is stationary, there is a $\lambda \in S_0$ that is a limit of A_0. By possibly shrinking the finitely many open sets, we can assume that $U_x \cap U_{x'}$ is empty for $x \neq x'$ with $f(x) = f(x') = \lambda$. Note that $F_\alpha \setminus \bigcup_{x \in f^{-1}(\lambda)} U_x$ is not empty for each $\alpha \in A_0$. It follows then that $A_0 \cap \lambda$ is contained in the image of the closed set $X \setminus \bigcup_{x \in f^{-1}(\lambda)} U_x$ while λ is not. This implies that the map f is not perfect. \hfill \Box
We will need to iterate the procedure from Lemma 4 in order to prove our main result. We adopt some notational convention to do so. Suppose we fix a sequence \(\{ x_\alpha : \alpha \in \omega_1 \} \) of points in a space \(X \). For any finite set \(F \subset \omega_1 \), let us use \(\hat{F} \) to denote the corresponding finite set \(\{ x_\alpha : \alpha \in F \} \). Similarly, for any uncountable collection \(\mathcal{F} \) of finite subsets of \(\omega_1 \), let \(\hat{\mathcal{F}} = \{ \hat{F} : F \in \mathcal{F} \} \), therefore be an uncountable collection of finite subsets of \(X \).

Next, for any uncountable set \(A \subset \omega_1 \) and integer \(n > 0 \), let \(\mathcal{F}_A^n \) denote the unique (canonical) partition of \(A \) into sets of size \(n \) such that \(\max F < \min F' \) (or conversely) for \(F \neq F' \in \mathcal{F}_A^n \). Finally, note that \(\bigcup F' \) (call it \(B \)) is an uncountable subset of \(A \) and that \(\mathcal{F}_B \) is a subfamily of \(\mathcal{F}_A^n \) because \(\mathcal{F}' = \mathcal{F}_B \).

As this notation builds up, it will be helpful to state the following simple fact.

Lemma 6. Let \(n, m \) be integers and let \(A \) be an uncountable subset of \(\omega_1 \). Let \(\mathcal{F}' \) be an uncountable subset of \(\mathcal{F}_A^n \) and let \(B = \bigcup \mathcal{F}' \). Then each member of \(\mathcal{F}_{n-m}^B \) is a union of \(m \) many pairwise disjoint members of \(\mathcal{F}' \).

We can now prove the main theorem.

Theorem 7. If \(X \) is a scattered space which maps perfectly onto \(\omega_1 \), then \(X \) does not have a small diagonal.

Proof. Assume that \(f \) is a perfect mapping from \(X \) onto \(\omega_1 \). Note that \(X \) is locally compact since, for each \(\lambda \in \omega_1 \), the set \(f^{-1}([0, \lambda]) \) is compact. For each \(\lambda \in \omega_1 \), we will let \(X_\lambda \) denote the points of \(X \) that map to \(\lambda \), and also note that \(X_\lambda \) is compact and scattered. Assume towards a contradiction that \(X \) has a small diagonal.

For each \(\alpha \in \omega_1 \), fix any point \(x_\alpha \in X \) such that \(f(x_\alpha) = \alpha \); thus we have chosen a fixed sequence of points \(\{ x_\alpha : \alpha \in \omega_1 \} \) as above. Recall that \(\mathbb{N} \) is the collection of all integer-valued functions with domain equal to some finite ordinal. We will inductively choose a collection, \(\{ A_t : t \in \mathbb{N} \} \), of uncountable subsets of \(\omega_1 \). In addition, we will also have selected \(\{ W_t : t \in \mathbb{N} \} \) consisting of covers of \(X \) by compact open sets. For each \(\emptyset \neq t \in \mathbb{N} \), let \(\pi(t) \) denote the usual integer product \(t(0) \cdot t(1) \cdot \ldots t(|t|-1) \), and let \(\pi(\emptyset) = 1 \).

To begin the induction let \(A_\emptyset \) denote the set \(\omega_1 \) and let \(W_\emptyset \) be any cover of \(X \) by compact open sets. Suppose that \(t \in \mathbb{N} \) is such
that A_t has not been defined, but that (by induction) $A_{t'}$ and W_t have been defined for all $t' < t$ in $\omega^* N$. Let $t' = t \upharpoonright (|t| - 1)$ be the immediate predecessor of t and let n denote the integer $\pi(t)$. We consider the family of finite sets $\mathcal{F} = \mathcal{F}^{A_{t'}}_n$ and the corresponding family $\hat{\mathcal{F}}$ of finite subsets of X. By Lemma 4, there is an open cover W_t (consisting of compact open sets) and an uncountable subcollection \mathcal{F}' of \mathcal{F} such that $W \cap \hat{\mathcal{F}}$ has at most one element for all $W \in W_t$ and $F \in \mathcal{F}'$. By Lemma 6, it follows by induction that for $t' \subset t$, each member of $\mathcal{F}^{A_{t'}}_n$ is a union of $\pi(t)$ members of $\mathcal{F}^{A_{t'}}_{\pi(t)}$.

For each $t \in \omega^* N$, the set of accumulation in ω_1 of the uncountable set A_t will be a cub in ω_1. Since the intersection of countably many cub’s of ω_1 is again a cub, we may choose a limit $\lambda \in \omega_1$ such that $A_t \cap \lambda$ is cofinal in λ for each $t \in \omega^* N$. Observe then that for each $F \in \mathcal{F}^{A_{t'}}_n$, with $\min F \in \lambda$ we also have $F \subset \lambda$ since $\lambda \cap (A_t \setminus \min F)$ is infinite and $\max F < \min F'$ for all $F' \in \mathcal{F}^{A_{t'}}_n$ such that $F' \setminus \min F$ is not empty.

Now we begin to inductively choose a finite sequence t of integers (hence $t \in \omega^* N$) and a descending sequence of ordinals (which must therefore stop in finitely many steps). Let γ_0 denote the maximum non-empty scattering level of X_λ (which must exist since X_λ is compact and non-empty). Set $t(0)$ to be any integer greater than the finitely many points of X_λ at scattering level γ_0. If we have defined the first k elements of t we will use $t \upharpoonright k$ to denote that function, even though we don’t yet know what t is. Let $W_0 \subset W_t$ (with $|W_0| < t(0)$) be a cover of those fewer than $t(0)$ many points at scattering level γ_0 of X_λ. Set $U_0 = \bigcup W_0$ and note that $\hat{F} \setminus U_0$ is not empty for each $F \in \mathcal{F}^{A_{t(0)}}$.

Assume now that we have defined $t(i), \gamma_i$ and W_i for $i < k$ such that $|W_i| < t(i)$, $W_i \subset W_{t(i+1)}$, and $X_\lambda \setminus \bigcup_{i < k} W_i$ has scattering height less than γ_{k-1}. We continue as follows. Set $U = \bigcup_{i < k} W_i$; if $X_\lambda \setminus U$ is empty we stop. Otherwise, let γ_k be the maximum non-empty scattering level of $X_\lambda \setminus U$ and let $t(k)$ be any integer larger than the cardinality of that level. Choose
\(W_k \subset W_{t|k+1}\) to be any fewer than \(t(k)\) many sets which covers that finite set of points of \(X_\lambda \setminus U\) at scattering level \(\gamma_k\).

Recall from above that we noted that for each \(F \in \mathcal{F}_{t(0)}^{A;_t}\), \(\widehat{F} \setminus \bigcup W_0\) is not empty. By Lemma 6 each \(F \in \mathcal{F}_{\pi(t|2)}^{A;_t}\) is a union of \(t(1)\) many pairwise disjoint members of \(\mathcal{F}_{t(0)}^{A;_t}\). Therefore, since \(|W_1| < t(1)\), it follows that \(\widehat{F} \setminus (\bigcup W_0 \cup \bigcup W_1)\) is not empty for each \(F \in \mathcal{F}_{\pi(t|2)}^{A;_t}\). By a straightforward induction it then follows that for each \(F \in \mathcal{F}_{\pi(t)}\) we have that \(\widehat{F} \setminus \bigcup \{\bigcup W_i : i < |t|\}\) is not empty.

We are now ready for our contradiction. Choose any sequence \(\{F_n : n \in \omega\} \subset \mathcal{F}_{\pi(t)}^{A;_t}\) such that \(\{\min F_n : n \in \omega\}\) is cofinal in \(\lambda\). Recall also that max \(F_n \in \lambda\) for each \(n \in \omega\) as well. For each \(n\), choose \(y_n \in \widehat{F} \setminus \bigcup \{\bigcup W_i : i < |t|\}\). It follows now that \(\{f(y_n) : n \in \omega\}\) is a closed subset of \(X \setminus \bigcup \{\bigcup W_i : i < |t|\}\) since \(X_\lambda\) is contained in \(\bigcup \{\bigcup W_i : i < |t|\}\). \(\square\)

Question 2. If a space \(X\) has a small diagonal and maps perfectly onto a space \(Y\) with point preimages being scattered, will \(Y\) also have a small diagonal?

The formulation and proof of Theorem 7 can easily be strengthened to only require that the map be a closed map onto a stationary subset of \(\omega_1\), and that point preimages are locally compact scattered rather than the whole space is scattered. In addition, it is easy to check that a compact scattered space with a small diagonal is countable and metrizable. Combining these ideas yields the following result.

Proposition 8. Suppose that a space \(X\) maps onto a subset \(S\) of \(\omega_1\) by a closed mapping such that fibers are compact and scattered. Then \(X\) has a small diagonal if and only if \(S\) is not stationary and the point preimages are also countable.

References

